Visible to the public Biblio

Found 265 results

Filters: First Letter Of Title is G  [Clear All Filters]
2017-02-03
Quanyan Zhu, University of Illinois at Urbana-Champaign, Linda Bushnell, Tamer Başar, University of Illinois at Urbana-Champaign.  2012.  Game-Theoretic Analysis of Node Capture and Cloning Attack with Multiple Attackers in Wireless Sensor Networks. 51st IEEE Conference on Decision and Control.

Wireless sensor networks are subject to attacks such as node capture and cloning, where an attacker physically captures sensor nodes, replicates the nodes, which are deployed into the network, and proceeds to take over the network. In this paper, we develop models for such an attack when there are multiple attackers in a network, and formulate multi-player games to model the noncooperative strategic behavior between the attackers and the network. We consider two cases: a static case where the attackers’ node capture rates are time-invariant and the network’s clone detection/revocation rate is a linear function of the state, and a dynamic case where the rates are general functions of time. We characterize Nash equilibrium solutions for both cases and derive equilibrium strategies for the players. In the static case, we study both the single-attacker and the multi-attacker games within an optimization framework, provide conditions for the existence of Nash equilibria and characterize them in closed forms. In the dynamic case, we study the underlying multi-person differential game under an open-loop information structure and provide a set of conditions to characterize the open-loop Nash equilibrium. We show the equivalence of the Nash equilibrium for the multi-person game to the saddle-point equilibrium between the network and the attackers as a team. We illustrate our results with numerical examples.

2016-11-15
Keywhan Chung, University of Illinois at Urbana-Champaign, Charles A. Kamhoua, Air Force Research Laboratory, Kevin A. Kwiat, Air Force Research Laboratory, Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, Ravishankar K. Iyer, University of Illinois at Urbana-Champaign.  2016.  Game Theory with Learning for Cyber Security Monitoring. IEEE High Assurance Systems Engineering Symposium (HASE 2016).

Recent attacks show that threats to cyber infrastructure are not only increasing in volume, but are getting more sophisticated. The attacks may comprise multiple actions that are hard to differentiate from benign activity, and therefore common detection techniques have to deal with high false positive rates. Because of the imperfect performance of automated detection techniques, responses to such attacks are highly dependent on human-driven decision-making processes. While game theory has been applied to many problems that require rational decisionmaking, we find limitation on applying such method on security games. In this work, we propose Q-Learning to react automatically to the adversarial behavior of a suspicious user to secure the system. This work compares variations of Q-Learning with a traditional stochastic game. Simulation results show the possibility of Naive Q-Learning, despite restricted information on opponents.

2016-06-19
Victor Heorhiadi, Shriram Rajagopalan, Hani Jamjoom, Michael K. Reiter, Vyas Sekar.  2016.  Gremlin: Systematic resilience testing of microservices. 36th IEEE International Conference on Distributed Computing Systems.

Modern Internet applications are being disaggregated into a microservice-based architecture, with services being updated and deployed hundreds of times a day. The accelerated software life cycle and heterogeneity of language runtimes in a single application necessitates a new approach for testing the resiliency of these applications in production infrastructures. We present Gremlin, a framework for systematically testing the failure-handling capabilities of microservices.  Gremlin is based on the observation that microservices are loosely coupled and thus rely on standard message-exchange patterns over the network. Gremlin allows the operator to easily design tests and executes them by manipulating inter-service messages at the network layer. We show how to use Gremlin to express common failure scenarios and how developers of an enterprise application were able to discover previously unknown bugs in their failure-handling code without modifying the application.

2015-12-02
Quanyan Zhu, University of Illinois at Urbana-Champaign, Tamer Başar, University of Illinois at Urbana-Champaign.  2015.  Game-theoretic Methods for Robustness, Security and Resilience of Cyber-physical Control Systems: Games-in-games Principle for Optimal Cross-layer Resilient Control Systems. IEEE Control Systems Magazine. 35

Critical infrastructures, such as power grids and transportation systems, are increasingly using open networks for operation. The use of open networks poses many challenges for control systems.  The  classical  design  of  control systems  takes  into  account  modeling uncertainties  as  well  as  physical  disturbances,  providing  a  multitude  of control design methods such as robust control, adaptive control, and stochastic control. With the growing level of integration of control systems with new information technologies, modern control systems face uncertainties not only from the physical world but also from the cybercomponents of the system.  The vulnerabilities of the software deployed in the new control system infra- structure will expose the control system to many potential Game-Theoretic Methods for Robustness, Security, and Resilience of Cyberphysical Control Systems risks and threats from attackers. Exploitation of these vulnerabilities can lead to severe damage as has been reported in various news outlets [1], [2]. More recently, it has been reported in [3] and [4] that a computer worm, Stuxnet, was spread to target Siemens supervisory control and data acquisition (SCADA) systems that are configured to control and monitor specific industrial processes.

 

2015-11-17
Tao Xie, University of Illinois at Urbana-Champaign, Judith Bishop, Microsoft Research, Nikolai Tillmann, Microsoft Research, Jonathan de Halleux, Microsoft Research.  2015.  Gamifying Software Security Education and Training via Secure Coding Duels in Code Hunt. Symposium and Bootcamp for the Science of Security (HotSoS).

Sophistication and flexibility of software development make it easy to leave security vulnerabilities in software applications for attack- ers. It is critical to educate and train software engineers to avoid in- troducing vulnerabilities in software applications in the first place such as adopting secure coding mechanisms and conducting secu- rity testing. A number of websites provide training grounds to train people’s hacking skills, which are highly related to security test- ing skills, and train people’s secure coding skills. However, there exists no interactive gaming platform for instilling gaming aspects into the education and training of secure coding. To address this issue, we propose to construct secure coding duels in Code Hunt, a high-impact serious gaming platform released by Microsoft Re- search. In Code Hunt, a coding duel consists of two code segments: a secret code segment and a player-visible code segment. To solve a coding duel, a player iteratively modifies the player-visible code segment to match the functional behaviors of the secret code seg- ment. During the duel-solving process, the player is given clues as a set of automatically generated test cases to characterize sample functional behaviors of the secret code segment. The game aspect in Code Hunt is to recognize a pattern from the test cases, and to re-engineer the player-visible code segment to exhibit the expected behaviors. Secure coding duels proposed in this work are coding duels that are carefully designed to train players’ secure coding skills, such as sufficient input validation and access control.

2015-05-06
Daesung Choi, Sungdae Hong, Hyoung-Kee Choi.  2014.  A group-based security protocol for Machine Type Communications in LTE-Advanced. Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on. :161-162.

We propose Authentication and Key Agreement (AKA) for Machine Type Communications (MTC) in LTE-Advanced. This protocol is based on an idea of grouping devices so that it would reduce signaling congestion in the access network and overload on the single authentication server. We verified that this protocol is designed to be secure against many attacks by using a software verification tool. Furthermore, performance evaluation suggests that this protocol is efficient with respect to authentication overhead and handover delay.
 

Apolinarski, W., Iqbal, U., Parreira, J.X..  2014.  The GAMBAS middleware and SDK for smart city applications. Pervasive Computing and Communications Workshops (PERCOM Workshops), 2014 IEEE International Conference on. :117-122.

The concept of smart cities envisions services that provide distraction-free support for citizens. To realize this vision, the services must adapt to the citizens' situations, behaviors and intents at runtime. This requires services to gather and process the context of their users. Mobile devices provide a promising basis for determining context in an automated manner on a large scale. However, despite the wide availability of versatile programmable mobile platforms such as Android and iOS, there are only few examples of smart city applications. One reason for this is that existing software platforms primarily focus on low-level resource management which requires application developers to repeatedly tackle many challenging tasks. Examples include efficient data acquisition, secure and privacy-preserving data distribution as well as interoperable data integration. In this paper, we describe the GAMBAS middleware which tries to simplify the development of smart city applications. To do this, GAMBAS introduces a Java-based runtime system with an associated software development kit (SDK). To clarify how the runtime system and the SDK can be used for application development, we describe two simple applications that highlight different middleware functions.

Talamo, M., Barchiesi, M.L., Merella, D., Schunck, C.H..  2014.  Global convergence in digital identity and attribute management: Emerging needs for standardization. ITU Kaleidoscope Academic Conference: Living in a converged world - Impossible without standards?, Proceedings of the 2014. :15-21.

In a converging world, where borders between countries are surpassed in the digital environment, it is necessary to develop systems that effectively replace the recognition “vis-a-vis” with digital means of recognizing and identifying entities and people. In this work we summarize the current standardization efforts in the area of digital identity management. We identify a number of open challenges that need to be addressed in the near future to ensure the interoperability and usability of digital identity management services in an efficient and privacy maintaining international framework. These challenges for standardization include: the management of identifiers for digital identities at the global level; attribute management including attribute format, structure, and assurance; procedures and protocols to link attributes to digital identities. Attention is drawn to key elements that should be considered in addressing these issues through standardization.

Eddeen, L.M.H.N., Saleh, E.M., Saadah, D..  2014.  Genetic Hash Algorithm. Computer Science and Information Technology (CSIT), 2014 6th International Conference on. :23-26.

Security is becoming a major concern in computing. New techniques are evolving every day; one of these techniques is Hash Visualization. Hash Visualization uses complex random generated images for security, these images can be used to hide data (watermarking). This proposed new technique improves hash visualization by using genetic algorithms. Genetic algorithms are a search optimization technique that is based on the evolution of living creatures. The proposed technique uses genetic algorithms to improve hash visualization. The used genetic algorithm was away faster than traditional previous ones, and it improved hash visualization by evolving the tree that was used to generate the images, in order to obtain a better and larger tree that will generate images with higher security. The security was satisfied by calculating the fitness value for each chromosome based on a specifically designed algorithm.
 

Alshammari, H., Elleithy, K., Almgren, K., Albelwi, S..  2014.  Group signature entanglement in e-voting system. Systems, Applications and Technology Conference (LISAT), 2014 IEEE Long Island. :1-4.

In any security system, there are many security issues that are related to either the sender or the receiver of the message. Quantum computing has proven to be a plausible approach to solving many security issues such as eavesdropping, replay attack and man-in-the-middle attack. In the e-voting system, one of these issues has been solved, namely, the integrity of the data (ballot). In this paper, we propose a scheme that solves the problem of repudiation that could occur when the voter denies the value of the ballot either for cheating purposes or for a real change in the value by a third party. By using an entanglement concept between two parties randomly, the person who is going to verify the ballots will create the entangled state and keep it in a database to use it in the future for the purpose of the non-repudiation of any of these two voters.

2015-05-05
Kun-Lin Tsai, Jiu-Soon Tan, Fang-Yie Leu, Yi-Li Huang.  2014.  A Group File Encryption Method using Dynamic System Environment Key. Network-Based Information Systems (NBiS), 2014 17th International Conference on. :476-483.

File encryption is an effective way for an enterprise to prevent its data from being lost. However, the data may still be deliberately or inadvertently leaked out by the insiders or customers. When the sensitive data are leaked, it often results in huge monetary damages and credit loss. In this paper, we propose a novel group file encryption/decryption method, named the Group File Encryption Method using Dynamic System Environment Key (GEMS for short), which provides users with auto crypt, authentication, authorization, and auditing security schemes by utilizing a group key and a system environment key. In the GEMS, the important parameters are hidden and stored in different devices to avoid them from being cracked easily. Besides, it can resist known-key and eavesdropping attacks to achieve a very high security level, which is practically useful in securing an enterprise's and a government's private data.
 

2015-05-04
Fatemi Moghaddam, F., Varnosfaderani, S.D., Mobedi, S., Ghavam, I., Khaleghparast, R..  2014.  GD2SA: Geo detection and digital signature authorization for secure accessing to cloud computing environments. Computer Applications and Industrial Electronics (ISCAIE), 2014 IEEE Symposium on. :39-42.

Cloud computing is a new paradigm and emerged technology for hosting and delivering resources over a network such as internet by using concepts of virtualization, processing power and storage. However, many challenging issues are still unclear in cloud-based environments and decrease the rate of reliability and efficiency for service providers and users. User Authentication is one of the most challenging issues in cloud-based environments and according to this issue this paper proposes an efficient user authentication model that involves both of defined phases during registration and accessing processes. Geo Detection and Digital Signature Authorization (GD2SA) is a user authentication tool for provisional access permission in cloud computing environments. The main aim of GD2SA is to compare the location of an un-registered device with the location of the user by using his belonging devices (e.g. smart phone). In addition, this authentication algorithm uses the digital signature of account owner to verify the identity of applicant. This model has been evaluated in this paper according to three main parameters: efficiency, scalability, and security. In overall, the theoretical analysis of the proposed model showed that it can increase the rate of efficiency and reliability in cloud computing as an emerging technology.

Moussallam, M., Daudet, L..  2014.  A general framework for dictionary based audio fingerprinting. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :3077-3081.

Fingerprint-based Audio recognition system must address concurrent objectives. Indeed, fingerprints must be both robust to distortions and discriminative while their dimension must remain to allow fast comparison. This paper proposes to restate these objectives as a penalized sparse representation problem. On top of this dictionary-based approach, we propose a structured sparsity model in the form of a probabilistic distribution for the sparse support. A practical suboptimal greedy algorithm is then presented and evaluated on robustness and recognition tasks. We show that some existing methods can be seen as particular cases of this algorithm and that the general framework allows to reach other points of a Pareto-like continuum.

2015-05-01
Ming Shange, Jingqiang Lin, Xiaokun Zhang, Changwei Xu.  2014.  A game-theory analysis of the rat-group attack in smart grids. Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014 IEEE Ninth International Conference on. :1-6.

More and more intelligent functions are proposed, designed and implemented in meters to make the power supply be smart. However, these complex functions also bring risks to the smart meters, and they become susceptible to vulnerabilities and attacks. We present the rat-group attack in this paper, which exploits the vulnerabilities of smart meters in the cyber world, but spreads in the physical world due to the direct economic benefits. To the best of our knowledge, no systematic work has been conducted on this attack. Game theory is then applied to analyze this attack, and two game models are proposed and compared under different assumptions. The analysis results suggest that the power company shall follow an open defense policy: disclosing the defense parameters to all users (i.e., the potential attackers), results in less loss in the attack.

2015-04-30
Xi Xiong, Haining Fan.  2014.  GF(2n) bit-parallel squarer using generalised polynomial basis for new class of irreducible pentanomials. Electronics Letters. 50:655-657.

Explicit formulae and complexities of bit-parallel GF(2n) squarers for a new class of irreducible pentanomials xn + xn-1 + xk + x + 1, where n is odd and 1 <; k <; (n - 1)/2 are presented. The squarer is based on the generalised polynomial basis of GF(2n). Its gate delay matches the best results, whereas its XOR gate complexity is n + 1, which is only about two thirds of the current best results.