Visible to the public Biblio

Found 1171 results

Filters: First Letter Of Title is P  [Clear All Filters]
2015-05-04
Banerjee, D., Bo Dong, Biswas, S., Taghizadeh, M..  2014.  Privacy-preserving channel access using blindfolded packet transmissions. Communication Systems and Networks (COMSNETS), 2014 Sixth International Conference on. :1-8.

This paper proposes a novel wireless MAC-layer approach towards achieving channel access anonymity. Nodes autonomously select periodic TDMA-like time-slots for channel access by employing a novel channel sensing strategy, and they do so without explicitly sharing any identity information with other nodes in the network. An add-on hardware module for the proposed channel sensing has been developed and the proposed protocol has been implemented in Tinyos-2.x. Extensive evaluation has been done on a test-bed consisting of Mica2 hardware, where we have studied the protocol's functionality and convergence characteristics. The functionality results collected at a sniffer node using RSSI traces validate the syntax and semantics of the protocol. Experimentally evaluated convergence characteristics from the Tinyos test-bed were also found to be satisfactory.

Ming Chen, Wenzhong Li, Zhuo Li, Sanglu Lu, Daoxu Chen.  2014.  Preserving location privacy based on distributed cache pushing. Wireless Communications and Networking Conference (WCNC), 2014 IEEE. :3456-3461.


Location privacy preservation has become an important issue in providing location based services (LBSs). When the mobile users report their locations to the LBS server or the third-party servers, they risk the leak of their location information if such servers are compromised. To address this issue, we propose a Location Privacy Preservation Scheme (LPPS) based on distributed cache pushing which is based on Markov Chain. The LPPS deploys distributed cache proxies in the most frequently visited areas to store the most popular location-related data and pushes them to mobile users passing by. In the way that the mobile users receive the popular location-related data from the cache proxies without reporting their real locations, the users' location privacy is well preserved, which is shown to achieve k-anonymity. Extensive experiments illustrate that the proposed LPPS achieve decent service coverage ratio and cache hit ratio with low communication overhead.
 

Tomandl, A., Herrmann, D., Federrath, H..  2014.  PADAVAN: Privacy-Aware Data Accumulation for Vehicular Ad-hoc Networks. Wireless and Mobile Computing, Networking and Communications (WiMob), 2014 IEEE 10th International Conference on. :487-493.

In this paper we introduce PADAVAN, a novel anonymous data collection scheme for Vehicular Ad Hoc Networks (VANETs). PADAVAN allows users to submit data anonymously to a data consumer while preventing adversaries from submitting large amounts of bogus data. PADAVAN is comprised of an n-times anonymous authentication scheme, mix cascades and various principles to protect the privacy of the submitted data itself. Furthermore, we evaluate the effectiveness of limiting an adversary to a fixed amount of messages.

Chang-Ji Wang, Dong-Yuan Shi, Xi-Lei Xu.  2014.  Pseudonym-Based Cryptography and Its Application in Vehicular Ad Hoc Networks. Broadband and Wireless Computing, Communication and Applications (BWCCA), 2014 Ninth International Conference on. :253-260.

As the cornerstone of the future intelligent transportation system, vehicular ad hoc networks (VANETs) have attracted intensive attention from the academic and industrial research communities in recent years. For widespread deployment of VANETs, security and privacy issues must be addressed properly. In this paper, we introduce the notion of pseudonym-based cryptography, and present a provable secure pseudonym-based cryptosystems with a trusted authority that includes a pseudonym-based multi-receiver encryption scheme, a pseudonym-based signature scheme, and a pseudonym-based key establishment protocol. We then propose a secure and efficient data access scheme for VANETs based on cooperative caching technology and our proposed pseudonym-based cryptosystems. On the one hand, the efficiency of data access are greatly improved by allowing the sharing and coordination of cached data among multiple vehicles. On the other hand, anonymity of the vehicles, data confidentiality, integrity and non-repudiation are guaranteed by employing our proposed pseudonym-based cryptosystems. Simulation results have shown that our proposed pseudonym-based cryptosystems are suitable to the VANETs environment.

Kazemi, M., Azmi, R..  2014.  Privacy preserving and anonymity in multi sinks wireless sensor networks with master sink. Computing, Communication and Networking Technologies (ICCCNT), 2014 International Conference on. :1-7.

The wireless network is become larger than past. So in the recent years the wireless with multiple sinks is more useful. The anonymity and privacy in this network is a challenge now. In this paper, we propose a new method for anonymity in multi sink wireless sensor network. In this method we use layer encryption to provide source and event privacy and we use a label switching routing method to provide sink anonymity in each cluster. A master sink that is a powerful base station is used to connect sinks to each other.

Haciosman, M., Bin Ye, Howells, G..  2014.  Protecting and Identifiying Smartphone Apps Using Icmetrics. Emerging Security Technologies (EST), 2014 Fifth International Conference on. :94-98.

As web-server spoofing is increasing, we investigate a novel technology termed ICmetrics, used to identify fraud for given software/hardware programs based on measurable quantities/features. ICmetrics technology is based on extracting features from digital systems' operation that may be integrated together to generate unique identifiers for each of the systems or create unique profiles that describe the systems' actual behavior. This paper looks at the properties of the several behaviors as a potential ICmetrics features to identify android apps, it presents several quality features which meet the ICmetrics requirements and can be used for encryption key generation. Finally, the paper identifies four android apps and verifies the use of ICmetrics by identifying a spoofed app as a different app altogether.

Hilgers, C., Macht, H., Muller, T., Spreitzenbarth, M..  2014.  Post-Mortem Memory Analysis of Cold-Booted Android Devices. IT Security Incident Management IT Forensics (IMF), 2014 Eighth International Conference on. :62-75.

As recently shown in 2013, Android-driven smartphones and tablet PCs are vulnerable to so-called cold boot attacks. With physical access to an Android device, forensic memory dumps can be acquired with tools like FROST that exploit the remanence effect of DRAM to read out what is left in memory after a short reboot. While FROST can in some configurations be deployed to break full disk encryption, encrypted user partitions are usually wiped during a cold boot attack, such that a post-mortem analysis of main memory remains the only source of digital evidence. Therefore, we provide an in-depth analysis of Android's memory structures for system and application level memory. To leverage FROST in the digital investigation process of Android cases, we provide open-source Volatility plugins to support an automated analysis and extraction of selected Dalvik VM memory structures.

Coover, B., Jinyu Han.  2014.  A Power Mask based audio fingerprint. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :1394-1398.

The Philips audio fingerprint[1] has been used for years, but its robustness against external noise has not been studied accurately. This paper shows the Philips fingerprint is noise resistant, and is capable of recognizing music that is corrupted by noise at a -4 to -7 dB signal to noise ratio. In addition, the drawbacks of the Philips fingerprint are addressed by utilizing a “Power Mask” in conjunction with the Philips fingerprint during the matching process. This Power Mask is a weight matrix given to the fingerprint bits, which allows mismatched bits to be penalized according to their relevance in the fingerprint. The effectiveness of the proposed fingerprint was evaluated by experiments using a database of 1030 songs and 1184 query files that were heavily corrupted by two types of noise at varying levels. Our experiments show the proposed method has significantly improved the noise resistance of the standard Philips fingerprint.

Van Vaerenbergh, S., González, O., Vía, J., Santamaría, I..  2014.  Physical layer authentication based on channel response tracking using Gaussian processes. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :2410-2414.

Physical-layer authentication techniques exploit the unique properties of the wireless medium to enhance traditional higher-level authentication procedures. We propose to reduce the higher-level authentication overhead by using a state-of-the-art multi-target tracking technique based on Gaussian processes. The proposed technique has the additional advantage that it is capable of automatically learning the dynamics of the trusted user's channel response and the time-frequency fingerprint of intruders. Numerical simulations show very low intrusion rates, and an experimental validation using a wireless test bed with programmable radios demonstrates the technique's effectiveness.

2015-05-01
Lichtblau, B., Dittrich, A..  2014.  Probabilistic Breadth-First Search - A Method for Evaluation of Network-Wide Broadcast Protocols. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-6.

In Wireless Mesh Networks (WMNs), Network-Wide Broadcasts (NWBs) are a fundamental operation, required by routing and other mechanisms that distribute information to all nodes in the network. However, due to the characteristics of wireless communication, NWBs are generally problematic. Optimizing them thus is a prime target when improving the overall performance and dependability of WMNs. Most existing optimizations neglect the real nature of WMNs and are based on simple graph models, which provide optimistic assumptions of NWB dissemination. On the other hand, models that fully consider the complex propagation characteristics of NWBs quickly become unsolvable due to their complexity. In this paper, we present the Monte Carlo method Probabilistic Breadth-First Search (PBFS) to approximate the reachability of NWB protocols. PBFS simulates individual NWBs on graphs with probabilistic edge weights, which reflect link qualities of individual wireless links in the WMN, and estimates reachability over a configurable number of simulated runs. This approach is not only more efficient than existing ones, but further provides additional information, such as the distribution of path lengths. Furthermore, it is easily extensible to NWB schemes other than flooding. The applicability of PBFS is validated both theoretically and empirically, in the latter by comparing reachability as calculated by PBFS and measured in a real-world WMN. Validation shows that PBFS quickly converges to the theoretically correct value and approximates the behavior of real-life testbeds very well. The feasibility of PBFS to support research on NWB optimizations or higher level protocols that employ NWBs is demonstrated in two use cases.

Saavedra Benitez, Y.I., Ben-Othman, J., Claude, J.-P..  2014.  Performance evaluation of security mechanisms in RAOLSR protocol for Wireless Mesh Networks. Communications (ICC), 2014 IEEE International Conference on. :1808-1812.

In this paper, we have proposed the IBE-RAOLSR and ECDSA-RAOLSR protocols for WMNs (Wireless Mesh Networks), which contributes to security routing protocols. We have implemented the IBE (Identity Based Encryption) and ECDSA (Elliptic Curve Digital Signature Algorithm) methods to secure messages in RAOLSR (Radio Aware Optimized Link State Routing), namely TC (Topology Control) and Hello messages. We then compare the ECDSA-based RAOLSR with IBE-based RAOLSR protocols. This study shows the great benefits of the IBE technique in securing RAOLSR protocol for WMNs. Through extensive ns-3 (Network Simulator-3) simulations, results have shown that the IBE-RAOLSR outperforms the ECDSA-RAOLSR in terms of overhead and delay. Simulation results show that the utilize of the IBE-based RAOLSR provides a greater level of security with light overhead.

Shuai Yi, Xiaogang Wang.  2014.  Profiling stationary crowd groups. Multimedia and Expo (ICME), 2014 IEEE International Conference on. :1-6.

Detecting stationary crowd groups and analyzing their behaviors have important applications in crowd video surveillance, but have rarely been studied. The contributions of this paper are in two aspects. First, a stationary crowd detection algorithm is proposed to estimate the stationary time of foreground pixels. It employs spatial-temporal filtering and motion filtering in order to be robust to noise caused by occlusions and crowd clutters. Second, in order to characterize the emergence and dispersal processes of stationary crowds and their behaviors during the stationary periods, three attributes are proposed for quantitative analysis. These attributes are recognized with a set of proposed crowd descriptors which extract visual features from the results of stationary crowd detection. The effectiveness of the proposed algorithms is shown through experiments on a benchmark dataset.

Xiaochun Cao, Na Liu, Ling Du, Chao Li.  2014.  Preserving privacy for video surveillance via visual cryptography. Signal and Information Processing (ChinaSIP), 2014 IEEE China Summit International Conference on. :607-610.

The video surveillance widely installed in public areas poses a significant threat to the privacy. This paper proposes a new privacy preserving method via the Generalized Random-Grid based Visual Cryptography Scheme (GRG-based VCS). We first separate the foreground from the background for each video frame. These foreground pixels contain the most important information that needs to be protected. Every foreground area is encrypted into two shares based on GRG-based VCS. One share is taken as the foreground, and the other one is embedded into another frame with random selection. The content of foreground can only be recovered when these two shares are got together. The performance evaluation on several surveillance scenarios demonstrates that our proposed method can effectively protect sensitive privacy information in surveillance videos.

Abd Aziz, N., Udzir, N.I., Mahmod, R..  2014.  Performance analysis for extended TLS with mutual attestation for platform integrity assurance. Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2014 IEEE 4th Annual International Conference on. :13-18.

A web service is a web-based application connected via the internet connectivity. The common web-based applications are deployed using web browsers and web servers. However, the security of Web Service is a major concern issues since it is not widely studied and integrated in the design stage of Web Service standard. They are add-on modules rather a well-defined solutions in standards. So, various web services security solutions have been defined in order to protect interaction over a network. Remote attestation is an authentication technique proposed by the Trusted Computing Group (TCG) which enables the verification of the trusted environment of platforms and assuring the information is accurate. To incorporate this method in web services framework in order to guarantee the trustworthiness and security of web-based applications, a new framework called TrustWeb is proposed. The TrustWeb framework integrates the remote attestation into SSL/TLS protocol to provide integrity information of the involved endpoint platforms. The framework enhances TLS protocol with mutual attestation mechanism which can help to address the weaknesses of transferring sensitive computations, and a practical way to solve the remote trust issue at the client-server environment. In this paper, we describe the work of designing and building a framework prototype in which attestation mechanism is integrated into the Mozilla Firefox browser and Apache web server. We also present framework solution to show improvement in the efficiency level.

Alam, S.M. Iftekharul, Fahmy, Sonia.  2014.  A Practical Approach for Provenance Transmission in Wireless Sensor Networks. Ad Hoc Netw.. 16:28–45.

Assessing the trustworthiness of sensor data and transmitters of this data is critical for quality assurance. Trust evaluation frameworks utilize data provenance along with the sensed data values to compute the trustworthiness of each data item. However, in a sizeable multi-hop sensor network, provenance information requires a large and variable number of bits in each packet, resulting in high energy dissipation due to the extended period of radio communication. In this paper, we design energy-efficient provenance encoding and construction schemes, which we refer to as Probabilistic Provenance Flow (PPF). Our work demonstrates the feasibility of adapting the Probabilistic Packet Marking (PPM) technique in IP traceback to wireless sensor networks. We design two bit-efficient provenance encoding schemes along with a complementary vanilla scheme. Depending on the network size and bit budget, we select the best method based on mathematical approximations and numerical analysis. We integrate PPF with provenance-based trust frameworks and investigate the trade-off between trustworthiness of data items and transmission overhead. We conduct TOSSIM simulations with realistic wireless links, and perform testbed experiments on 15–20 TelosB motes to demonstrate the effectiveness of PPF. Our results show that the encoding schemes of PPF have identical performance with a low bit budget (∼32-bit), requiring 33% fewer packets and 30% less energy than PPM variants to construct provenance. With a twofold increase in bit budget, PPF with the selected encoding scheme reduces energy consumption by 46–60%.

Van Vaerenbergh, S., González, O., Vía, J., Santamaría, I..  2014.  Physical layer authentication based on channel response tracking using Gaussian processes. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. :2410-2414.

Physical-layer authentication techniques exploit the unique properties of the wireless medium to enhance traditional higher-level authentication procedures. We propose to reduce the higher-level authentication overhead by using a state-of-the-art multi-target tracking technique based on Gaussian processes. The proposed technique has the additional advantage that it is capable of automatically learning the dynamics of the trusted user's channel response and the time-frequency fingerprint of intruders. Numerical simulations show very low intrusion rates, and an experimental validation using a wireless test bed with programmable radios demonstrates the technique's effectiveness.

Rezvani, M., Ignjatovic, A., Bertino, E., Jha, S..  2014.  Provenance-aware security risk analysis for hosts and network flows. Network Operations and Management Symposium (NOMS), 2014 IEEE. :1-8.

Detection of high risk network flows and high risk hosts is becoming ever more important and more challenging. In order to selectively apply deep packet inspection (DPI) one has to isolate in real time high risk network activities within a huge number of monitored network flows. To help address this problem, we propose an iterative methodology for a simultaneous assessment of risk scores for both hosts and network flows. The proposed approach measures the risk scores of hosts and flows in an interdependent manner; thus, the risk score of a flow influences the risk score of its source and destination hosts, and also the risk score of a host is evaluated by taking into account the risk scores of flows initiated by or terminated at the host. Our experimental results show that such an approach not only effective in detecting high risk hosts and flows but, when deployed in high throughput networks, is also more efficient than PageRank based algorithms.

Baraldi, A., Boschetti, L., Humber, M.L..  2014.  Probability Sampling Protocol for Thematic and Spatial Quality Assessment of Classification Maps Generated From Spaceborne/Airborne Very High Resolution Images. Geoscience and Remote Sensing, IEEE Transactions on. 52:701-760.

To deliver sample estimates provided with the necessary probability foundation to permit generalization from the sample data subset to the whole target population being sampled, probability sampling strategies are required to satisfy three necessary not sufficient conditions: 1) All inclusion probabilities be greater than zero in the target population to be sampled. If some sampling units have an inclusion probability of zero, then a map accuracy assessment does not represent the entire target region depicted in the map to be assessed. 2) The inclusion probabilities must be: a) knowable for nonsampled units and b) known for those units selected in the sample: since the inclusion probability determines the weight attached to each sampling unit in the accuracy estimation formulas, if the inclusion probabilities are unknown, so are the estimation weights. This original work presents a novel (to the best of these authors' knowledge, the first) probability sampling protocol for quality assessment and comparison of thematic maps generated from spaceborne/airborne very high resolution images, where: 1) an original Categorical Variable Pair Similarity Index (proposed in two different formulations) is estimated as a fuzzy degree of match between a reference and a test semantic vocabulary, which may not coincide, and 2) both symbolic pixel-based thematic quality indicators (TQIs) and sub-symbolic object-based spatial quality indicators (SQIs) are estimated with a degree of uncertainty in measurement in compliance with the well-known Quality Assurance Framework for Earth Observation (QA4EO) guidelines. Like a decision-tree, any protocol (guidelines for best practice) comprises a set of rules, equivalent to structural knowledge, and an order of presentation of the rule set, known as procedural knowledge. The combination of these two levels of knowledge makes an original protocol worth more than the sum of its parts. The several degrees of novelty of the proposed probability sampling protocol are highlighted in this paper, at the levels of understanding of both structural and procedural knowledge, in comparison with related multi-disciplinary works selected from the existing literature. In the experimental session, the proposed protocol is tested for accuracy validation of preliminary classification maps automatically generated by the Satellite Image Automatic Mapper (SIAM™) software product from two WorldView-2 images and one QuickBird-2 image provided by DigitalGlobe for testing purposes. In these experiments, collected TQIs and SQIs are statistically valid, statistically significant, consistent across maps, and in agreement with theoretical expectations, visual (qualitative) evidence and quantitative quality indexes of operativeness (OQIs) claimed for SIAM™ by related papers. As a subsidiary conclusion, the statistically consistent and statistically significant accuracy validation of the SIAM™ pre-classification maps proposed in this contribution, together with OQIs claimed for SIAM™ by related works, make the operational (automatic, accurate, near real-time, robust, scalable) SIAM™ software product eligible for opening up new inter-disciplinary research and market opportunities in accordance with the visionary goal of the Global Earth Observation System of Systems initiative and the QA4EO international guidelines.

Yingmeng Xiang, Lingfeng Wang, Yichi Zhang.  2014.  Power system adequacy assessment with probabilistic cyber attacks against breakers. PES General Meeting | Conference Exposition, 2014 IEEE. :1-5.

Modern power systems heavily rely on the associated cyber network, and cyber attacks against the control network may cause undesired consequences such as load shedding, equipment damage, and so forth. The behaviors of the attackers can be random, thus it is crucial to develop novel methods to evaluate the adequacy of the power system under probabilistic cyber attacks. In this study, the external and internal cyber structures of the substation are introduced, and possible attack paths against the breakers are analyzed. The attack resources and vulnerability factors of the cyber network are discussed considering their impacts on the success probability of a cyber attack. A procedure integrating the reliability of physical components and the impact of cyber attacks against breakers are proposed considering the behaviors of the physical devices and attackers. Simulations are conducted based on the IEEE RTS79 system. The impact of the attack resources and attack attempt numbers are analyzed for attackers from different threats groups. It is concluded that implementing effective cyber security measures is crucial to the cyber-physical power grids.

Xuezhong Guan, Jinlong Liu, Zhe Gao, Di Yu, Miao Cai.  2014.  Power grids vulnerability analysis based on combination of degree and betweenness. Control and Decision Conference (2014 CCDC), The 26th Chinese. :4829-4833.

This paper proposes an analysis method of power grids vulnerability based on complex networks. The method effectively combines the degree and betweenness of nodes or lines into a new index. Through combination of the two indexes, the new index can help to analyze the vulnerability of power grids. Attacking the line of the new index can obtain a smaller size of the largest cluster and global efficiency than that of the pure degree index or betweenness index. Finally, the fault simulation results of IEEE 118 bus system show that the new index can reveal the vulnerability of power grids more effectively.

2015-04-30
Miyoung Jang, Min Yoon, Jae-Woo Chang.  2014.  A privacy-aware query authentication index for database outsourcing. Big Data and Smart Computing (BIGCOMP), 2014 International Conference on. :72-76.

Recently, cloud computing has been spotlighted as a new paradigm of database management system. In this environment, databases are outsourced and deployed on a service provider in order to reduce cost for data storage and maintenance. However, the service provider might be untrusted so that the two issues of data security, including data confidentiality and query result integrity, become major concerns for users. Existing bucket-based data authentication methods have problem that the original spatial data distribution can be disclosed from data authentication index due to the unsophisticated data grouping strategies. In addition, the transmission overhead of verification object is high. In this paper, we propose a privacy-aware query authentication which guarantees data confidentiality and query result integrity for users. A periodic function-based data grouping scheme is designed to privately partition a spatial database into small groups for generating a signature of each group. The group signature is used to check the correctness and completeness of outsourced data when answering a range query to users. Through performance evaluation, it is shown that proposed method outperforms the existing method in terms of range query processing time up to 3 times.

Potkonjak, M., Goudar, V..  2014.  Public Physical Unclonable Functions. Proceedings of the IEEE. 102:1142-1156.

A physical unclonable function (PUF) is an integrated circuit (IC) that serves as a hardware security primitive due to its complexity and the unpredictability between its outputs and the applied inputs. PUFs have received a great deal of research interest and significant commercial activity. Public PUFs (PPUFs) address the crucial PUF limitation of being a secret-key technology. To some extent, the first generation of PPUFs are similar to SIMulation Possible, but Laborious (SIMPL) systems and one-time hardware pads, and employ the time gap between direct execution and simulation. The second PPUF generation employs both process variation and device aging which results in matched devices that are excessively difficult to replicate. The third generation leaves the analog domain and employs reconfigurability and device aging to produce digital PPUFs. We survey representative PPUF architectures, related public protocols and trusted information flows, and related testing issues. We conclude by identifying the most important, challenging, and open PPUF-related problems.

Cerqueira Ferreira, H.G., De Sousa, R.T., Gomes de Deus, F.E., Dias Canedo, E..  2014.  Proposal of a secure, deployable and transparent middleware for Internet of Things. Information Systems and Technologies (CISTI), 2014 9th Iberian Conference on. :1-4.

This paper proposes a security architecture for an IoT transparent middleware. Focused on bringing real life objects to the virtual realm, the proposed architecture is deployable and comprises protection measures based on existent technologies for security such as AES, TLS and oAuth. This way, privacy, authenticity, integrity and confidentiality on data exchange services are integrated to provide security for generated smart objects and for involved users and services in a reliable and deployable manner.

Nigam, Varsha, Jain, Saurabh, Burse, Kavita.  2014.  Profile Based Scheme Against DDoS Attack in WSN. Proceedings of the 2014 Fourth International Conference on Communication Systems and Network Technologies. :112–116.

Wireless Sensor networks (WSN) is an promising technology and have enormous prospective to be working in critical situations like battlefields and commercial applications such as traffic surveillance, building, habitat monitoring and smart homes and many more scenarios. One of the major challenges in wireless sensor networks face today is security. In this paper we proposed a profile based protection scheme (PPS security scheme against DDoS (Distributed Denial of Service) attack. This king of attacks are flooding access amount of unnecessary packets in network by that the network bandwidth are consumed by that data delivery in network are affected. Our main aim is visualized the effect of DDoS attack in network and identify the node or nodes that are affected the network performance. The profile based security scheme are check the profile of each node in network and only the attacker is one of the node that flooded the unnecessary packets in network then PPS has block the performance of attacker. The performance of network is measured on the basis of performance metrics like routing load, throughput etc. The simulation results are represents the same performance in case of normal routing and in case of PPS scheme, it means that the PPS scheme is effective and showing 0% infection in presence of attacker.

Kia, S.S., Cortes, J., Martinez, S..  2014.  Periodic and event-triggered communication for distributed continuous-time convex optimization. American Control Conference (ACC), 2014. :5010-5015.

We propose a distributed continuous-time algorithm to solve a network optimization problem where the global cost function is a strictly convex function composed of the sum of the local cost functions of the agents. We establish that our algorithm, when implemented over strongly connected and weight-balanced directed graph topologies, converges exponentially fast when the local cost functions are strongly convex and their gradients are globally Lipschitz. We also characterize the privacy preservation properties of our algorithm and extend the convergence guarantees to the case of time-varying, strongly connected, weight-balanced digraphs. When the network topology is a connected undirected graph, we show that exponential convergence is still preserved if the gradients of the strongly convex local cost functions are locally Lipschitz, while it is asymptotic if the local cost functions are convex. We also study discrete-time communication implementations. Specifically, we provide an upper bound on the stepsize of a synchronous periodic communication scheme that guarantees convergence over connected undirected graph topologies and, building on this result, design a centralized event-triggered implementation that is free of Zeno behavior. Simulations illustrate our results.