Biblio
In today's world privacy is paramount in everyone's life. Alongside the growth of IoT (Internet of things), wearable devices are becoming widely popular for real-time user monitoring and wise service support. However, in contrast with the traditional short-range communications, these resource-scanty devices face various vulnerabilities and security threats during the course of interactions. Hence, designing a security solution for these devices while dealing with the limited communication and computation capabilities is a challenging task. In this work, PUF (Physical Unclonable Function) and lightweight cryptographic parameters are used together for performing two-way authentication between wearable devices and smartphone, while the simultaneous verification is performed by providing yoking-proofs to the Cloud Server. At the end, it is shown that the proposed scheme satisfies many security aspects and is flexible as well as lightweight.
The developments made in IoT applications have made wearable devices a popular choice for collecting user data to monitor this information and provide intelligent service support. Since wearable devices are continuously collecting and transporting a user's sensitive data over the network, there exist increased security challenges. Moreover, wearable devices lack the computation capabilities in comparison to traditional short-range communication devices. In this paper, authors propounded a Yoking Proof based remote Authentication scheme for Cloud-aided Wearable devices (YPACW) which takes PUF and cryptographic functions and joins them to achieve mutual authentication between the wearable devices and smartphone via a cloud server, by performing the simultaneous verification of these devices, using the established yoking-proofs. Relative to Liu et al.'s scheme, YPACW provides better results with the reduction of communication and processing cost significantly.
This paper presents an authentication protocol specifically tailored for IoT devices that inherently limits the number of times that an entity can authenticate itself with a given key pair. The protocol we propose is based on a stateful hash-based digital signature system called eXtended Merkle Signature Scheme (XMSS), which has increased its popularity of late due to its resistance to quantum-computer-aided attacks. We propose a 1-pass authentication protocol that can be customized according to the server capabilities to keep track of the key pair state. In addition, we present results when ported to ARM Cortex-M3 and M0 processors.
Today, as surveillance systems are widely used for indoor and outdoor monitoring applications, there is a growing interest in real-time generation detection and there are many different applications for real-time generation detection and analysis. Two-dimensional videos; It is used in multimedia content-based indexing, information acquisition, visual surveillance and distributed cross-camera surveillance systems, human tracking, traffic monitoring and similar applications. It is of great importance for the development of systems for national security by following a moving target within the scope of military applications. In this research, a more efficient solution is proposed in addition to the existing methods. Therefore, we present YOLO, a new approach to object detection for military applications.
Darknet markets are online services behind Tor where cybercriminals trade illegal goods and stolen datasets. In recent years, security analysts and law enforcement start to investigate the darknet markets to study the cybercriminal networks and predict future incidents. However, vendors in these markets often create multiple accounts ($\backslash$em i.e., Sybils), making it challenging to infer the relationships between cybercriminals and identify coordinated crimes. In this paper, we present a novel approach to link the multiple accounts of the same darknet vendors through photo analytics. The core idea is that darknet vendors often have to take their own product photos to prove the possession of the illegal goods, which can reveal their distinct photography styles. To fingerprint vendors, we construct a series deep neural networks to model the photography styles. We apply transfer learning to the model training, which allows us to accurately fingerprint vendors with a limited number of photos. We evaluate the system using real-world datasets from 3 large darknet markets (7,641 vendors and 197,682 product photos). A ground-truth evaluation shows that the system achieves an accuracy of 97.5%, outperforming existing stylometry-based methods in both accuracy and coverage. In addition, our system identifies previously unknown Sybil accounts within the same markets (23) and across different markets (715 pairs). Further case studies reveal new insights into the coordinated Sybil activities such as price manipulation, buyer scam, and product stocking and reselling.
This paper describes a system for embodied conversational agents developed by Inmerssion and one of the applications—Young Merlin: Trial by Fire —built with this system. In the Merlin application, the ECA and a human interact with speech in virtual reality. The goal of this application is to provide engaging VR experiences that build rapport through storytelling and verbal interactions. The agent is fully automated, and his attitude towards the user changes over time depending on the interaction. The conversational system was built through a declarative approach that supports animations, markup language, and gesture recognition. Future versions of Merlin will implement multi-character dialogs, additional actions, and extended interaction time.
The recent growth of anonymous social network services – such as 4chan, Whisper, and Yik Yak – has brought online anonymity into the spotlight. For these services to function properly, the integrity of user anonymity must be preserved. If an attacker can determine the physical location from where an anonymous message was sent, then the attacker can potentially use side information (for example, knowledge of who lives at the location) to de-anonymize the sender of the message. In this paper, we investigate whether the popular anonymous social media application Yik Yak is susceptible to localization attacks, thereby putting user anonymity at risk. The problem is challenging because Yik Yak application does not provide information about distances between user and message origins or any other message location information. We provide a comprehensive data collection and supervised machine learning methodology that does not require any reverse engineering of the Yik Yak protocol, is fully automated, and can be remotely run from anywhere. We show that we can accurately predict the locations of messages up to a small average error of 106 meters. We also devise an experiment where each message emanates from one of nine dorm colleges on the University of California Santa Cruz campus. We are able to determine the correct dorm college that generated each message 100\textbackslash% of the time.