Biblio
Software Defined Networks (SDNs) have gained prominence recently due to their flexible management and superior configuration functionality of the underlying network. SDNs, with OpenFlow as their primary implementation, allow for the use of a centralised controller to drive the decision making for all the supported devices in the network and manage traffic through routing table changes for incoming flows. In conventional networks, machine learning has been shown to detect malicious intrusion, and classify attacks such as DoS, user to root, and probe attacks. In this work, we extend the use of machine learning to improve traffic tolerance for SDNs. To achieve this, we extend the functionality of the controller to include a resilience framework, ReSDN, that incorporates machine learning to be able to distinguish DoS attacks, focussing on a neptune attack for our experiments. Our model is trained using the MIT KDD 1999 dataset. The system is developed as a module on top of the POX controller platform and evaluated using the Mininet simulator.
The world is becoming an immense critical information infrastructure, with the fast and increasing entanglement of utilities, telecommunications, Internet, cloud, and the emerging IoT tissue. This may create enormous opportunities, but also brings about similarly extreme security and dependability risks. We predict an increase in very sophisticated targeted attacks, or advanced persistent threats (APT), and claim that this calls for expanding the frontier of security and dependability methods and techniques used in our current CII. Extreme threats require extreme defenses: we propose resilience as a unifying paradigm to endow systems with the capability of dynamically and automatically handling extreme adversary power, and sustaining perpetual and unattended operation. In this position paper, we present this vision and describe our methodology, as well as the assurance arguments we make for the ultra-resilient components and protocols they enable, illustrated with case studies in progress.
Software-based systems are nowadays complex and highly distributed. In contrast, existing intrusion detection mechanisms are not always suitable for protecting these systems against new and sophisticated attacks that increasingly appear. In this paper, we present a new generic approach that combines monitoring and formal methods in order to ensure attack-tolerance at a high level of abstraction. Our experiments on an authentication Web application show that this method is effective and realistic to tolerate a variety of attacks.
Security issues in the IoT based CPS are exacerbated with human participation in CPHS due to the vulnerabilities in both the technologies and the human involvement. A holistic framework to mitigate security threats in the IoT-based CPHS environment is presented to mitigate these issues. We have developed threat model involving human elements in the CPHS environment. Research questions, directions, and ideas with respect to securing IoT based CPHS against collaborative attacks are presented.
Sophisticated cyber attacks by state-sponsored and criminal actors continue to plague government and industrial infrastructure. Intuitively, partitioning cyber systems into survivable, intrusion tolerant compartments is a good idea. This prevents witting and unwitting insiders from moving laterally and reaching back to their command and control (C2) servers. However, there is a lack of artifacts that can predict the effectiveness of this approach in a realistic setting. We extend earlier work by relaxing simplifying assumptions and providing a new attacker-facing metric. In this article, we propose new closed-form mathematical models and a discrete time simulation to predict three critical statistics: probability of compromise, probability of external host compromise and probability of reachback. The results of our new artifacts agree with one another and with previous work, which suggests they are internally valid and a viable method to evaluate the effectiveness of cyber zone defense.
Cyber infrastructures are highly vulnerable to intrusions and other threats. The main challenges in cloud computing are failure of data centres and recovery of lost data and providing a data security system. This paper has proposed a Virtualization and Data Recovery to create a virtual environment and recover the lost data from data servers and agents for providing data security in a cloud environment. A Cloud Manager is used to manage the virtualization and to handle the fault. Erasure code algorithm is used to recover the data which initially separates the data into n parts and then encrypts and stores in data servers. The semi trusted third party and the malware changes made in data stored in data centres can be identified by Artificial Intelligent methods using agents. Java Agent Development Framework (JADE) is a tool to develop agents and facilitates the communication between agents and allows the computing services in the system. The framework designed and implemented in the programming language JAVA as gateway or firewall to recover the data loss.
Consensus is a fundamental approach to implementing fault-tolerant services through replication. It is well known that there exists a tradeoff between the cost and the resilience. For instance, Crash Fault Tolerant (CFT) protocols have a low cost but can only handle crash failures while Byzantine Fault Tolerant (BFT) protocols handle arbitrary failures but have a higher cost. Hybrid protocols enjoy the benefits of both high performance without failures and high resiliency under failures by switching among different subprotocols. However, it is challenging to determine which subprotocols should be used. We propose a moving target approach to switch among protocols according to the existing system and network vulnerability. At the core of our approach is a formalized cost model that evaluates the vulnerability and performance of consensus protocols based on real-time Intrusion Detection System (IDS) signals. Based on the evaluation results, we demonstrate that a safe, cheap, and unpredictable protocol is always used and a high IDS error rate can be tolerated.
Cloud computation has become prominent with seemingly unlimited amount of storage and computation available to users. Yet, security is a major issue that hampers the growth of cloud. In this research we investigate a collaborative Intrusion Detection System (IDS) based on the ensemble learning method. It uses weak classifiers, and allows the use of untapped resources of cloud to detect various types of attacks on the cloud system. In the proposed system, tasks are distributed among available virtual machines (VM), individual results are then merged for the final adaptation of the learning model. Performance evaluation is carried out using decision trees and using fuzzy classifiers, on KDD99, one of the largest datasets for IDS. Segmentation of the dataset is done in order to mimic the behavior of real-time data traffic occurred in a real cloud environment. The experimental results show that the proposed approach reduces the execution time with improved accuracy, and is fault-tolerant when handling VM failures. The system is a proof-of-concept model for a scalable, cloud-based distributed system that is able to explore untapped resources, and may be used as a base model for a real-time hierarchical IDS.
The network intrusion detection problem domain is described with mathematical knowledge in this paper, and a novel IDS detection model based on immune mechanism is designed. We study the key modules of IDS system, detector tolerance module and the algorithms of IDS detection intensively. Then, the continuous bit matching algorithm for computing affinity is improved by further analysis. At the same time, we adopt controllable variation and random variation, as well as dynamic demotion to improve the dynamic clonal selection algorithm. Finally the experimental simulations verify that the novel artificial immune algorithm has better detection rate and lower noise factor.
Computer security has become an increasingly important hot topic in computer and communication industry, since it is important to support critical business process and to protect personal and sensitive information. Computer security is to keep security attributes (confidentiality, integrity and availability) of computer systems, which face the threats such as deny-of-service (DoS), virus and intrusion. To ensure high computer security, the intrusion tolerance technique based on fault-tolerant scheme has been widely applied. This paper presents the quantitative performance evaluation of a virtual machine (VM) based intrusion tolerant system. Concretely, two security measures are derived; MTTSF (mean time to security failure) and the effective traffic intensity. The mathematical analysis is achieved by using Laplace-Stieltjes transforms according to the analysis of M/G/1 queueing system.
As the Internet becomes an important part of the infrastructure our society depends on, it is crucial to construct networks that are able to work even when part of the network is compromised. This paper presents the first practical intrusion-tolerant network service, targeting high-value applications such as monitoring and control of global clouds and management of critical infrastructure for the power grid. We use an overlay approach to leverage the existing IP infrastructure while providing the required resiliency and timeliness. Our solution overcomes malicious attacks and compromises in both the underlying network infrastructure and in the overlay itself. We deploy and evaluate the intrusion-tolerant overlay implementation on a global cloud spanning East Asia, North America, and Europe, and make it publicly available.
Computer systems face the threat of deliberate security intrusions due to malicious attacks that exploit security holes or vulnerabilities. In practice, these security holes or vulnerabilities still remain in the system and applications even if developers carefully execute system testing. Thus it is necessary and important to develop the mechanism to prevent and/or tolerate security intrusions. As a result, the computer systems are often evaluated with confidentiality, integrity and availability (CIA) criteria from the viewpoint of security, and security is treated as a QoS (Quality of Service) attribute at par with other QoS attributes such as capacity and performance. In this paper, we present the method for quantifying a security attribute called mean time to security failure (MTTSF) of a VM-based intrusion tolerant system based on queueing theory.
Data generation and its utilization in important decision applications has been growing an extremely fast pace, which has made data a valuable resource that needs to be rigorously protected from attackers. Cloud storage systems claim to offer the promise of secure and elastic data storage services that can adapt to changing storage requirements. Despite diligent efforts being made to protect data, recent successful attacks highlight the need for going beyond the existing approaches centered on intrusion prevention, detection and recovery mechanisms. However, most security mechanisms have finite rate of failure, and with intrusion becoming more sophisticated and stealthy, the failure rate appears to be rising. In this paper we propose the use data fragmentation, followed by coding that introduces redundant fragments and dispersing fragments to multiple and independent cloud storage systems with each cloud handling only a single fragments. The paper proposes a multi-cloud fragmented cloud storage system architecture and design of the related software code. Probabilistic analysis is carried to quantify its intrusion tolerance abilities.
The cloud has become an established and widespread paradigm. This success is due to the gain of flexibility and savings provided by this technology. However, the main obstacle to full cloud adoption is security. The cloud, as many other systems taking advantage of the Internet, is also facing threats that compromise data confidentiality and availability. In addition, new cloud-specific attacks have emerged and current intrusion detection and prevention mechanisms are not enough to protect the complex infrastructure of the cloud from these vulnerabilities. Furthermore, one of the promises of the cloud is the Quality of Service (QoS) by continuous delivery, which must be ensured even in case of intrusion. This work presents an overview of the main cloud vulnerabilities, along with the solutions proposed in the context of the H2020 CLARUS project in terms of monitoring techniques for intrusion detection and prevention, including attack-tolerance mechanisms.
The serializability of transactions is the most important property that ensure correct processing to transactions. In case of concurrent access to the same data by several transactions, or in case of dependency relationships between running sub transactions. But some transactions has been marked as malicious and they compromise the serialization of running system. For that purpose, we propose an intrusion tolerant scheme to ensure the continuity of the running transactions. A transaction dependency graph is also used by the CDC to make decisions concerning the set of data and transactions that are threatened by a malicious activity. We will give explanations about how to use the proposed scheme to illustrate its behavior and efficiency against a compromised transaction-based in a cloud of databases environment. Several issues should be considered when dealing with the processing of a set of interleaved transactions in a transaction based environment. In most cases, these issues are due to the concurrent access to the same data by several transactions or the dependency relationship between running transactions. The serializability may be affected if a transaction that belongs to the processing node is compromised.
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar
Multi-state logic presents a promising avenue for more-than-Moore scaling, since efficient implementation of multi-valued logic (MVL) can significantly reduce switching and interconnection requirements and result in significant benefits compared to binary CMOS. So far, traditional approaches lag behind binary CMOS due to: (a) reliance on logic decomposition approaches [4][5][6] that result in many multi-valued minterms [4], complex polynomials [5], and decision diagrams [6], which are difficult to implement, and (b) emulation of multi-valued computation and communication through binary switches and medium that require data conversion, and large circuits. In this paper, we propose a fundamentally different approach for MVL decomposition, merging concepts from data science and nanoelectronics to tackle the problems, (a) First, we do linear regression on all inputs and outputs of a multivalued function, and find an expression that fits most input and output combinations. For unmatched combinations, we do successive regressions to find linear expressions. Next, using our novel visual pattern matching technique, we find conditions based on input and output conditions to select each expression. These expressions along with associated selection criteria ensure that for all possible inputs of a specific function, correct output can be reached. Our selection of regression model to find linear expressions, coefficients and conditions allow efficient hardware implementation. We discuss an approach for solving problem (b) and show an example of quaternary sum circuit. Our estimates show 65.6% saving of switching components compared with a 4-bit CMOS adder.
Tensor decompositions, which are factorizations of multi-dimensional arrays, are becoming increasingly important in large-scale data analytics. A popular tensor decomposition algorithm is Canonical Decomposition/Parallel Factorization using alternating least squares fitting (CP-ALS). Tensors that model real-world applications are often very large and sparse, driving the need for high performance implementations of decomposition algorithms, such as CP-ALS, that can take advantage of many types of compute resources. In this work we present ReFacTo, a heterogeneous distributed tensor decomposition implementation based on DeFacTo, an existing distributed memory approach to CP-ALS. DFacTo reduces the critical routine of CP-ALS to a series of sparse matrix-vector multiplications (SpMVs). ReFacTo leverages GPUs within a cluster via MPI to perform these SpMVs and uses OpenMP threads to parallelize other routines. We evaluate the performance of ReFacTo when using NVIDIA's GPU-based cuSPARSE library and compare it to an alternative implementation that uses Intel's CPU-based Math Kernel Library (MKL) for the SpMV. Furthermore, we provide a discussion of the performance challenges of heterogeneous distributed tensor decompositions based on the results we observed. We find that on up to 32 nodes, the SpMV of ReFacTo when using MKL is up to 6.8× faster than ReFacTo when using cuSPARSE.
In this paper a method of monostatic RCS measuring in real conditions for complex shaped objects is proposed. The basic idea of the method is to provide measuring in near field zone for different parts of the object (fragments) separately. This technique is titled "decomposition method". After such measurements all RCS data are summed and one can obtain the average RCS of investigated object. Such method is much more accessible in comparison with natural measurements in far field zone. In this paper the decomposition method is tested numerically. For this a model of complex shape object (tank T-90) is divided into the fragments for some direction of view. It is shown that the sum of RCS of the fragments is close to the full object RCS for corresponding direction.
Audio Steganography is the technique of hiding any secret information behind a cover audio file without impairing its quality. Data hiding in audio signals has various applications such as secret communications and concealing data that may influence the security and safety of governments and personnel and has possible important applications in 5G communication systems. This paper proposes an efficient secure steganography scheme based on the high correlation between successive audio signals. This is similar to the case of differential pulse coding modulation technique (DPCM) where encoding uses the redundancy in sample values to encode the signals with lower bit rate. Discrete Wavelet Transform (DWT) of audio samples is used to store hidden data in the least important coefficients of Haar transform. We use the benefit of the small differences between successive samples generated from encoding of the cover audio signal wavelet coefficients to hide image data without making a remarkable change in the cover audio signal. instead of changing of actual audio samples so this doesn't perceptually degrade the audio signal and provides higher hiding capacity with lower distortion. To further increase the security of the image hiding process, the image to be hidden is divided into blocks and the bits of each block are XORed with a different random sequence of logistic maps using hopping technique. The performance of the proposed algorithm has been estimated extensively against attacks and experimental results show that the proposed method achieves good robustness and imperceptibility.
This paper introduces an ensemble model that solves the binary classification problem by incorporating the basic Logistic Regression with the two recent advanced paradigms: extreme gradient boosted decision trees (xgboost) and deep learning. To obtain the best result when integrating sub-models, we introduce a solution to split and select sets of features for the sub-model training. In addition to the ensemble model, we propose a flexible robust and highly scalable new scheme for building a composite classifier that tries to simultaneously implement multiple layers of model decomposition and outputs aggregation to maximally reduce both bias and variance (spread) components of classification errors. We demonstrate the power of our ensemble model to solve the problem of predicting the outcome of Hearthstone, a turn-based computer game, based on game state information. Excellent predictive performance of our model has been acknowledged by the second place scored in the final ranking among 188 competing teams.
The inherent heterogeneity in the uncertainty of variable generations (e.g., wind, solar, tidal and wave-power) in electric grid coupled with the dynamic nature of distributed architecture of sub-systems, and the need for information synchronization has made the problem of resource allocation and monitoring a tremendous challenge for the next-generation smart grid. Unfortunately, the deployment of distributed algorithms across micro grids have been overlooked in the electric grid sector. In particular, centralized methods for managing resources and data may not be sufficient to monitor a complex electric grid. This paper discusses a decentralized constrained decomposition using Linear Programming (LP) that optimizes the inter-area transfer across micro grids that reduces total generation cost for the grid. A test grid of IEEE 14-bus system is sectioned into two and three areas, and its effect on inter-transfer is analyzed.
We present a neural network technique for the analysis and extrapolation of time-series data called Neural Decomposition (ND). Units with a sinusoidal activation function are used to perform a Fourier-like decomposition of training samples into a sum of sinusoids, augmented by units with nonperiodic activation functions to capture linear trends and other nonperiodic components. We show how careful weight initialization can be combined with regularization to form a simple model that generalizes well. Our method generalizes effectively on the Mackey-Glass series, a dataset of unemployment rates as reported by the U.S. Department of Labor Statistics, a time-series of monthly international airline passengers, and an unevenly sampled time-series of oxygen isotope measurements from a cave in north India. We find that ND outperforms popular time-series forecasting techniques including LSTM, echo state networks, (S)ARIMA, and SVR with a radial basis function.
We consider the problem of enabling robust range estimation of eigenvalue decomposition (EVD) algorithm for a reliable fixed-point design. The simplicity of fixed-point circuitry has always been so tempting to implement EVD algorithms in fixed-point arithmetic. Working towards an effective fixed-point design, integer bit-width allocation is a significant step which has a crucial impact on accuracy and hardware efficiency. This paper investigates the shortcomings of the existing range estimation methods while deriving bounds for the variables of the EVD algorithm. In light of the circumstances, we introduce a range estimation approach based on vector and matrix norm properties together with a scaling procedure that maintains all the assets of an analytical method. The method could derive robust and tight bounds for the variables of EVD algorithm. The bounds derived using the proposed approach remain same for any input matrix and are also independent of the number of iterations or size of the problem. Some benchmark hyperspectral data sets have been used to evaluate the efficiency of the proposed technique. It was found that by the proposed range estimation approach, all the variables generated during the computation of Jacobi EVD is bounded within ±1.
Advances in virtual reality have generated substantial interest in accurately reproducing and storing spatial audio in the higher order ambisonics (HOA) representation, given its rendering flexibility. Recent standardization for HOA compression adopted a framework wherein HOA data are decomposed into principal components that are then encoded by standard audio coding, i.e., frequency domain quantization and entropy coding to exploit psychoacoustic redundancy. A noted shortcoming of this approach is the occasional mismatch in principal components across blocks, and the resulting suboptimal transitions in the data fed to the audio coder. Instead, we propose a framework where singular value decomposition (SVD) is performed after transformation to the frequency domain via the modified discrete cosine transform (MDCT). This framework not only ensures smooth transition across blocks, but also enables frequency dependent SVD for better energy compaction. Moreover, we introduce a novel noise substitution technique to compensate for suppressed ambient energy in discarded higher order ambisonics channels, which significantly enhances the perceptual quality of the reconstructed HOA signal. Objective and subjective evaluation results provide evidence for the effectiveness of the proposed framework in terms of both higher compression gains and better perceptual quality, compared to existing methods.