Cascading Machine Learning to Attack Bitcoin Anonymity
Title | Cascading Machine Learning to Attack Bitcoin Anonymity |
Publication Type | Conference Paper |
Year of Publication | 2019 |
Authors | Zola, Francesco, Eguimendia, Maria, Bruse, Jan Lukas, Orduna Urrutia, Raul |
Conference Name | 2019 IEEE International Conference on Blockchain (Blockchain) |
Date Published | July 2019 |
Publisher | IEEE |
ISBN Number | 978-1-7281-4693-5 |
Keywords | anonymity, Bitcoin analysis, bitcoin anonymity, bitcoin blockchain data, bitcoin entity characterization, Bitcoin network, blockchain, cascading classifiers, cascading machine, composability, cryptography, data privacy, decentralized cryptocurrency, digital assets, electronic money, entities classification, graph model, Human Behavior, learning (artificial intelligence), Metrics, multiclass classification performance, pattern classification, pubcrawl, resilience, Resiliency |
Abstract | Bitcoin is a decentralized, pseudonymous cryptocurrency that is one of the most used digital assets to date. Its unregulated nature and inherent anonymity of users have led to a dramatic increase in its use for illicit activities. This calls for the development of novel methods capable of characterizing different entities in the Bitcoin network. In this paper, a method to attack Bitcoin anonymity is presented, leveraging a novel cascading machine learning approach that requires only a few features directly extracted from Bitcoin blockchain data. Cascading, used to enrich entities information with data from previous classifications, led to considerably improved multi-class classification performance with excellent values of Precision close to 1.0 for each considered class. Final models were implemented and compared using different machine learning models and showed significantly higher accuracy compared to their baseline implementation. Our approach can contribute to the development of effective tools for Bitcoin entity characterization, which may assist in uncovering illegal activities. |
URL | https://ieeexplore.ieee.org/document/8946134 |
DOI | 10.1109/Blockchain.2019.00011 |
Citation Key | zola_cascading_2019 |
- decentralized cryptocurrency
- Resiliency
- resilience
- pubcrawl
- pattern classification
- multiclass classification performance
- Metrics
- learning (artificial intelligence)
- Human behavior
- graph model
- entities classification
- electronic money
- digital assets
- anonymity
- data privacy
- Cryptography
- composability
- cascading machine
- cascading classifiers
- blockchain
- Bitcoin network
- bitcoin entity characterization
- bitcoin blockchain data
- bitcoin anonymity
- Bitcoin analysis