Biblio
Machine learning techniques help to understand underlying patterns in datasets to develop defense mechanisms against cyber attacks. Multilayer Perceptron (MLP) technique is a machine learning technique used in detecting attack vs. benign data. However, it is difficult to construct any effective model when there are imbalances in the dataset that prevent proper classification of attack samples in data. In this research, we use UGR'16 dataset to conduct data wrangling initially. This technique helps to prepare a test set from the original dataset to train the neural network model effectively. We experimented with a series of inputs of varying sizes (i.e. 10000, 50000, 1 million) to observe the performance of the MLP neural network model with distribution of features over accuracy. Later, we use Generative Adversarial Network (GAN) model that produces samples of different attack labels (e.g. blacklist, anomaly spam, ssh scan) for balancing the dataset. These samples are generated based on data from the UGR'16 dataset. Further experiments with MLP neural network model shows that a balanced attack sample dataset, made possible with GAN, produces more accurate results than an imbalanced one.
Network traffic anomaly detection is of critical importance in cybersecurity due to the massive and rapid growth of sophisticated computer network attacks. Indeed, the more new Internet-related technologies are created, the more elaborate the attacks become. Among all the contemporary high-level attacks, dictionary-based brute-force attacks (BFA) present one of the most unsurmountable challenges. We need to develop effective methods to detect and mitigate such brute-force attacks in realtime. In this paper, we investigate SSH and FTP brute-force attack detection by using the Long Short-Term Memory (LSTM) deep learning approach. Additionally, we made use of machine learning (ML) classifiers: J48, naive Bayes (NB), decision table (DT), random forest (RF) and k-nearest-neighbor (k-NN), for additional detection purposes. We used the well-known labelled dataset CICIDS2017. We evaluated the effectiveness of the LSTM and ML algorithms, and compared their performance. Our results show that the LSTM model outperforms the ML algorithms, with an accuracy of 99.88%.
Android, being the most widespread mobile operating systems is increasingly becoming a target for malware. Malicious apps designed to turn mobile devices into bots that may form part of a larger botnet have become quite common, thus posing a serious threat. This calls for more effective methods to detect botnets on the Android platform. Hence, in this paper, we present a deep learning approach for Android botnet detection based on Convolutional Neural Networks (CNN). Our proposed botnet detection system is implemented as a CNN-based model that is trained on 342 static app features to distinguish between botnet apps and normal apps. The trained botnet detection model was evaluated on a set of 6,802 real applications containing 1,929 botnets from the publicly available ISCX botnet dataset. The results show that our CNN-based approach had the highest overall prediction accuracy compared to other popular machine learning classifiers. Furthermore, the performance results observed from our model were better than those reported in previous studies on machine learning based Android botnet detection.
A rapid rise in cyber-attacks on Cyber Physical Systems (CPS) has been observed in the last decade. It becomes even more concerning that several of these attacks were on critical infrastructures that indeed succeeded and resulted into significant physical and financial damages. Experimental testbeds capable of providing flexible, scalable and interoperable platform for executing various cybersecurity experiments is highly in need by all stakeholders. A container-based SCADA testbed is presented in this work as a potential platform for executing cybersecurity experiments. Through this testbed, a network traffic containing ARP spoofing is generated that represents a Man in the middle (MITM) attack. While doing so, scanning of different systems within the network is performed which represents a reconnaissance attack. The network traffic generated by both ARP spoofing and network scanning are captured and further used for preparing a dataset. The dataset is utilized for training a network classification model through a machine learning algorithm. Performance of the trained model is evaluated through a series of tests where promising results are obtained.
The existing network intrusion detection methods have less label samples in the training process, and the detection accuracy is not high. In order to solve this problem, this paper designs a network intrusion detection method based on the GAN model by using the adversarial idea contained in the GAN. The model enhances the original training set by continuously generating samples, which expanding the label sample set. In order to realize the multi-classification of samples, this paper transforms the previous binary classification model of the generated adversarial network into a supervised learning multi-classification model. The loss function of training is redefined, so that the corresponding training method and parameter setting are obtained. Under the same experimental conditions, several performance indicators are used to compare the detection ability of the proposed method, the original classification model and other models. The experimental results show that the method proposed in this paper is more stable, robust, accurate detection rate, has good generalization ability, and can effectively realize network intrusion detection.