Title | Resource Allocation and Throughput Maximization in Decoupled 5G |
Publication Type | Conference Paper |
Year of Publication | 2020 |
Authors | Khan, Humayun Zubair, Ali, Mudassar, Naeem, Muhammad, Rashid, Imran, Siddiqui, Adil Masood, Imran, Muhammad, Mumtaz, Shahid |
Conference Name | 2020 IEEE Wireless Communications and Networking Conference (WCNC) |
Keywords | 5G, coupled congestion control, decoupled association, Heterogeneous Network, MINLP, optimization theory, pubcrawl, Resiliency, Scalability |
Abstract | Traditional downlink (DL)-uplink (UL) coupled cell association scheme is suboptimal solution for user association as most of the users are associated to a high powered macro base station (MBS) compared to low powered small base station (SBS) in heterogeneous network. This brings challenges like multiple interference issues, imbalanced user traffic load which leads to a degraded throughput in HetNet. In this paper, we investigate DL-UL decoupled cell association scheme to address these challenges and formulate a sum-rate maximization problem in terms of admission control, cell association and power allocation for MBS only, coupled and decoupled HetNet. The formulated optimization problem falls into a class of mixed integer non linear programming (MINLP) problem which is NP-hard and requires an exhaustive search to find the optimal solution. However, computational complexity of the exhaustive search increases exponentially with the increase in number of users. Therefore, an outer approximation algorithm (OAA), with less complexity, is proposed as a solution to find near optimal solution. Extensive simulations work have been done to evaluate proposed algorithm. Results show effectiveness of proposed novel decoupled cell association scheme over traditional coupled cell association scheme in terms of users associated/attached, mitigating interference, traffic offloading to address traffic imbalances and sum-rate maximization. |
DOI | 10.1109/WCNC45663.2020.9120853 |
Citation Key | khan_resource_2020 |