Visible to the public Towards Scalable Verification of Deep Reinforcement Learning

TitleTowards Scalable Verification of Deep Reinforcement Learning
Publication TypeConference Paper
Year of Publication2021
AuthorsAmir, Guy, Schapira, Michael, Katz, Guy
Conference Name2021 Formal Methods in Computer Aided Design (FMCAD)
Date Publishedoct
KeywordsCommunication networks, compositionality, Deep Learning, design automation, Metrics, pubcrawl, reinforcement learning, resilience, Resiliency, Safety, Scalability, scalable verification, Tools
AbstractDeep neural networks (DNNs) have gained significant popularity in recent years, becoming the state of the art in a variety of domains. In particular, deep reinforcement learning (DRL) has recently been employed to train DNNs that realize control policies for various types of real-world systems. In this work, we present the whiRL 2.0 tool, which implements a new approach for verifying complex properties of interest for DRL systems. To demonstrate the benefits of whiRL 2.0, we apply it to case studies from the communication networks domain that have recently been used to motivate formal verification of DRL systems, and which exhibit characteristics that are conducive for scalable verification. We propose techniques for performing k-induction and semi-automated invariant inference on such systems, and leverage these techniques for proving safety and liveness properties that were previously impossible to verify due to the scalability barriers of prior approaches. Furthermore, we show how our proposed techniques provide insights into the inner workings and the generalizability of DRL systems. whiRL 2.0 is publicly available online.
DOI10.34727/2021/isbn.978-3-85448-046-4_28
Citation Keyamir_towards_2021