Applications of CPS technologies used in the planning, functional design, operation and management of facilities for any mode of transportation in order to provide for the safe, efficient, rapid, comfortable, convenient, economical, and environmentally compatible movement of people and goods.
file
This project addresses the management of the air traffic system, a cyber-physical system where the need for a tight connection between the computational algorithms and the physical system is critical to safe, reliable and efficient performance. Indeed, the lack of this tight connection is one of the reasons current systems are overwhelmed by the ever increasing traffic and suffer when there is any deviation from the expected (e.g., changing weather).
file
This CPS research focuses on collaborative driving, specifically in convoy type applications, and testing of hybrid systems. Specfically, this research investigates the development of the computational issues and testing aspects of a newer, more tactical hybrid state autonomous controller for multi-robot exploration scenarios for DSTO Multi Autonomous Ground-robotic International Challenge (MAGIC 2010) and the evaluation of th eautomotive convoy-based scenarios of the Grand Cooperative Driving Challenge (May 2011).
file
This research project addresses fundamental challenges in the verification and analysis of distributed hybrid systems. In particular, we are working to minimize the mismatch between the combinations of dynamics that occur in complex physical systems and the limited kinds of dynamics currently supported in analysis.
file
The principal objective of this project is the development of novel control architectures and computationally efficient controller design algorithms for distributed cyber-physical systems with decentralized information infrastructures and limited communication capabilities. Interest is in distributed cyber-physical systems where the system components are able to communicate with one another.