University of Michigan

file

Visible to the public CPS:Small: Imposing Recovery Period for Battery Health Monitoring, Prognosis, and Optimization

The prevalence of battery-powered systems such as electric vehicles, smartphones, and IoT devices has made batteries crucial to everyone's daily life and business. Battery health, however, degrades over time, not only decreasing system reliability such as unexpected system shutoffs, but also causing overheating/gassing which, in turn, increases safety risks such as thermal runaway or even battery fire/explosion. To address these problems, we must monitor, prognose, and optimize battery health throughout the physical system life.

file

Visible to the public CPS: Synergy: Connected Testbeds for Connected Vehicles

This research team envisions that connected testbeds, i.e., remotely accessible testbeds integrated over a network in closed loop, will provide an affordable, repeatable, scalable, and high-fidelity solution for early cyber-physical evaluation of connected automated vehicle (CAV) technologies. Engineering testbeds are critical for empirical validation of new concepts and transitioning new theory to practice. However, the high cost of establishing new testbeds or scaling the existing ones up hinders their wide utilization.

file

Visible to the public Cyber-Physical System for Bridge Lifecycle Monitoring

The goal of this research project is to develop a scalable cyber-physical system (CPS) framework for the integration of physical and computational systems for bridge lifecycle monitoring. Bridge monitoring involves several independent but isolated components. Sharing of information and software modules across different systems is limited. Information sharing and system integration would facilitate meaningful use of data, thereby enhancing bridge operation and maintenance and public safety.

file

Visible to the public Camera-based Triggering of Bridge Structural Health Monitoring Systems using a CPS Framework

The goal of this project is to create a scalable and robust cyber-physical system (CPS) framework for the observation and control of the functional interdependencies between bridge structures (stationary physical systems) and trucks (mobile physical agents). A CPS framework (Figure 1) is being developed to monitor and control trucks within a single highway corridor to manage the imposed loads and the consumption of structural life by trucks on highway infrastructure including bridges.