Equipment used in the health care industry that use CPS technology.
file
Abstract:
Many practical barriers continue to exist for a blind individual who strives to live an independent and active life, despite decades of development of assistive technologies. This project addresses the following two most prominent challenges: (1) disparity in information-sharing among people with visual impairment and its limited understanding by the research community; and (2) lack of methods and tools for effectively addressing the disparity.
file
Abstract:
Medical devices are typically developed as stand-alone units. Current industrial Verification and Validation (V&V) techniques primarily target stand-alone systems. Moreover, the US Food and Drug Administration's (FDA) regulatory clearance processes are designed to approve such devices that are integrated by a single manufacturer with complete control over all components.
file
Abstract:
The objective of this research is the development of a framework for assessing the reliability and safety of robotic surgery systems during development, field testing, and general deployment. The framework uses accurate simulations to assess pre-clinical reliability before deployment. After deployment, the framework uses data collection through online monitoring of the system as it is being used in the field, followed by analysis to obtain assessments of operational reliability and safety.
file
Abstract:
The realization of a robust infrastructure that enables simultaneous transport of many micron and smaller sized particles will have a transformative impact on a vast range of areas such as medicine, drug development, electronics, and bio-materials.
file
Abstract:
Stroke is the major cause of disability in adults in the western world, often resulting in hemiparesis and severe mobility impairments. Recently, rigid exoskeletons have been introduced for clinic-based gait rehabilitation: these systems can apply high levels of assistance, but also introduce kinematic restrictions and significant additional mass to the patient. As such, these devices are well suited to patients with little to no residual mobility (e.g.
file
Abstract:
This project develops an integrated design and simulation environment for the creation of miniature capsule robots (MCRs). An MCR is a biocompatible Cyber-Physical System (CPS) designed to operate in the human body to accomplish diagnostic or therapeutic tasks (e.g., colonoscopy, abdominal surgery, etc.). A typical MCR has to fulfill three main constraints: safety, low power operation and small size. Advances in miniaturization of electronic devices have made MCRs a reality.
file
Abstract:
People with upper extremity disabilities are gaining increased independence through the use of assistive robotic arms, but performing tasks that require many small precise movements remains difficult. In fact, a confounding factor is that the more severe a person's motor impairment, the more limited are the control interfaces available to them to operate the system.
file
Abstract:
This project, NSF grant 1329363, is a modular, computationally-distributed multi-robot cyber-physical system (CPS) for assisting young developmentally-delayed children learning to walk. The challenges of assisting young developmentally-delayed children learning to walk are 1) stabilizing medio-lateral body sway, 2) developing gait that exploits energy exchange, and 3) coordinating multiple degrees of freedom.
file
Abstract:
Episodic brain disorders such as epilepsy have a considerable impact on a patient's productivity and quality of life and may be life-threatening when seizures cannot be controlled with medications. We will create a second generation brain-implantable sensing and stimulating device (BISSD) based on CPS principles and practice.
file
Abstract:
Security and privacy concerns in the increasingly interconnected world are receiving much attention from the research community, policymakers, and general public. However, much of the recent and on-going efforts concentrate on privacy in communication and social interactions. The advent of cyber-physical systems, which aim at tight integration between distributed computational intelligence, communication networks, physical world, and human actors, opens new possibilities for developing intelligent systems with new capabilities.