Modernized electrical grid automated to improve the efficiency, reliability, economics, and sustainability of the production and distribution of electricity.
biblio
Submitted by awhitesell on Tue, 11/15/2016 - 4:58pm
file
Multi-timescale electricity markets augment the traditional electricity market by enabling consumers to procure electricity in a futures market. Heavy power consumers, such as cloud providers and data center operators, can significantly benefit from multi-timescale electricity markets by purchasing some of the needed electricity ahead of time at cheaper rates.
file
Data-driven intelligence is an essential foundation for physical systems in transportation safety and efficiency, area surveillance and security, as well as environmental sustainability. This project develops new computer system infrastructure and algorithms for self-sustainable data-driven systems in the field.
file
This project designs algorithms for the integration of plug-in hybrid electric vehicles (PEVs) into the power grid. Specifically, the project will formulate and solve optimization problems critical to various entities in the PEV ecosystem -- PEV owners, commercial charging station owners, aggregators, and distribution companies -- at the distribution / retail level.
file
The objective of this research is to create tools to manage uncertainty in the design and certification process of safety-critical aviation systems. The research focuses on three innovative ideas to support this objective. First, probabilistic techniques will be introduced to specify system-level requirements and bound the performance of dynamical components. These will reduce the design costs associated with complex aviation systems consisting of tightly integrated components produced by many independent engineering organizations.
file
The major goal of this project is to investigate ecient, economic ways to integrate renewable energy resources.
file
This project is focused on the fundamental research in establishing a foundational framework towards the development of an autonomous Cyber-Physical System (CPS) through distributed computation in a Networked Control Systems (NCS) paradigm. Specific attention is focused on an application where the computational, and communication challenges are unique due to the sheer dimensionality of the physical system. An example of such CPS is the smart power grid, which includes large-scale deployment of distributed and networked Phasor Measurement Units (PMUs) and wind energy resources.
file
We investigate the ability of a collection of deferrable energy loads to behave as a battery; that is, to absorb and release energy in a controllable fashion up to fixed and predetermined limits on volume, charge rate and discharge rate. We derive bounds on the battery capacity that can be realized and show that there are fundamental trade-offs between battery parameters.
file
The poster provides a general overview of the motivation for testbeds, and summarizes the high-level objectives of the project. Then, the poster outlines a conceptual architecture of how a layered testbed architecture could be extended to realize federated testbeds. Followed by this, the poster provides a high-level conceptual architecture of the remote access framework developed as part of the project. The poster also provides some details on the various tasks performed as part of the remote access framework.