The terms denote engineering domains that have high CPS content.
file
Episodic brain disorders such as epilepsy have a considerable impact on a patient's productivity and quality of life and may be life-threatening when seizures cannot be controlled with medications. We will create a second generation brain-implantable sensing and stimulating device (BISSD) based on CPS principles and practice. The BISSD will be composed of modules placed intracranially to continuously monitor brain state and vulnerability to seizure and intervene with electrical stimulation to block the development of seizure.
file
Abstract: Cyber-physical systems have been increasingly subject to cyber-attacks including code injection and code reuse attacks. With the tightly coupled nature of cyber components with the physical domain, these attacks have the potential to cause significant damage if critical applications such as automobiles are compromised. Instruction Set Randomization and Address Space Randomization have been commonly proposed to address these types of attacks.
file
To improve the current capabilities of automotive active safety control systems (ASCS) one needs to take into account the interactions between driver/vehicle/ASCS/environment. To achieve this goal, we are proposing a novel approach to collect data from a sensor-equipped vehicle. Motion Sensors (Inertial Measurement Units) are placed on various locations in the car, particularly around the driver's operational environment and moving car components, such as steering wheel, seat, pedals, as well as critical car components (e.g. motor, suspensions).
file
Smart grid includes two interdependent infrastructures: power transmission and distribution network, and the supporting telecommunications network. Complex interactions among these infrastructures lead to new pathways for attack and failure propagation that are currently not well understood. This innovative project takes a holistic multilevel approach to understand and characterize the interdependencies between these two infrastructures, and devise mechanisms to enhance their robustness.
file
The goal of this project is to create a scalable and robust cyber-physical system (CPS) framework for the observation and control of the functional interdependencies between bridge structures (stationary physical systems) and trucks (mobile physical agents). A CPS framework (Figure 1) is being developed to monitor and control trucks within a single highway corridor to manage the imposed loads and the consumption of structural life by trucks on highway infrastructure including bridges.
file
Cyber-Physical Systems (CPS) are being increasingly deployed in critical infrastructures such as electric-power, water, transportation, and other networks. These deployments are facilitating real-time monitoring and closed-loop control by exploiting the advances in wireless sensor-actuator networks, the internet of "everything," data-driven analytics, and machine-to-machine interfaces. CPS operations depend on the synergy of computational and physical components.