University of Illinois Urbana-Champaign
file
Our proposal's main objective is to realize cyber-physical platform and principles for (i) interrogating global modalities of intracellular transport with causative factors isolated at the single-molecule scale and (ii) realizing efficient and robust infrastructure for transporting micron/molecular scale cargo using distributed strategies We are realizing in-vitro, a transport network with roadways formed by microtubules where motorproteins, kinesin and dynein, will form vehicles ferrying cargo.
file
Abstract:
GRID 2020: The power grid in the U.S. and many regions of the world is undergoing changes because of new technologies and government mandates. It is believed that smart meters and a smarter grid will lead to more efficient use of our infrastructure. In addition, increased renewable energy integration will provide power at low cost.
file
Abstract:
The objective of this project is to develop a distributed algorithmic framework, supported by a highly fault-tolerant software system, for executing critical transmission-level operations of the North American power grid using gigantic volumes of Synchrophasor data.
file
In principle, best-effort technologies can be used for building each individual automotive cyber-physical system (CPS) from the ground-up, through careful design, testing, and verification. Each such undertaking, however, is technically challenging, error-prone, and expensive. Since many of these systems share common challenges, employ common design patterns, and verification principles, it is expected that generic software tools for automating design, testing, and verification can alleviate these challenges.
file
A presentation on Foundations of Cyberphysical Systems by P.R. Kumar (University of Illinois, Urbana-Champaign) at the National CPS PI Meeting 2010
file
The objective of this research is to create interfaces that enable people with impaired sensory-motor function to control interactive cyber-physical systems such as artificial limbs, wheelchairs, automobiles, and aircraft. The approach is based on the premise that performance can be significantly enhanced merely by warping the perceptual feedback provided to the human user. A systematic way to design this feedback will be developed by addressing a number of underlying mathematical and computational challenges.