The terms denote engineering domains that have high CPS content.
file
Start Date: September 1, 2011
The goal of this project is to integrate digital microfluidics systems with thin-film photodetectors in the top plate to realize biochemical target sensing using fluorescence. System control, adaptation, and reconfiguration through software will lead to a general-purpose lab-on-chip computing platform, in the same way as programmable computing devices allow multifunctional capabilities via software on a hardware platform. This level of integration, decision, and controlled reconfigurability will be a significant step forward in clinical diagnostics.
file
The purpose of this research is to develop optimization and control techniques and integrate them with real-time simulation models to achieve load balancing in complex networks. Our application case is the regional freight system. Freight moves on rail and road networks which are also shared by passengers. These networks today work independently, even though they are highly interdependent, and the result is inefficiencies in the form of congestion, pollution, and excess fuel consumption.
file
The objective of this research is to create tools to manage uncertainty in the design and certification process of safety-critical aviation systems. The research focuses on three innovative ideas to support this objective. First, probabilistic techniques will be introduced to specify system-level requirements and bound the performance of dynamical components. These will reduce the design costs associated with complex aviation systems consisting of tightly integrated components produced by many independent engineering organizations.
file
The vision of this work is to unite experts in granular mechanics, optimal control, and learning theory in order to define a methodology for advancing cyber-physical systems (CPS) involving a tight coupling of the physical with the cyber through dynamic interactions that must be learned online. The proposed work will advance the science of cyber-physical systems by more explicitly tying sensing, perception, and computing to the optimization and control of physical systems whose properties are variable and uncertain.
file
The major goal of this project is to investigate ecient, economic ways to integrate renewable energy resources.
file
Objective: The objective of this project is to improve the performance and current capabilities of automotive active safety control systems by taking into account the interactions between the driver, the vehicle, the active safety system and the environment. The current approach in the design of automotive active safety systems follows the philosophy "one size fits all," in the sense that active safety systems are the same for all vehicles and do not take into account the skills, habits and state of the human driver who may operate the vehicle.
file
One of the challenges for the future cyber-physical systems is the exploration of large design spaces. Evolutionary algorithms (EAs), which embody a simplified computational model of the mutation and selection mechanisms of natural evolution, are known to be effective for design optimization. However, the traditional formulations are limited to choosing values for a predetermined set of parameters within a given fixed architecture. This project explores techniques, based on the idea of hidden genes, which enable EAs to select a variable number of components, thereby expand
file
Visual identification of structural flaws is quite valuable not only to predict an imminent collapse of a bridge, but also to determine effective precautionary measures and repairs.