CPS-PI Meeting 2017

file

Visible to the public Synergy: Collaborative Research: Computationally Aware Cyber-Physical Systems

The objective of this work is to generate new fundamental science for cyber-physical systems (CPSs) that enables more accurate and faster trajectory synthesis for controllers with nonlinear plants, or nonlinear constraints that encode obstacles. The approach is to utilize hybrid control to switch between models whose accuracy is normalized by their computational burden. This synergistic approach is why we deem our proposed work will enable Computationally Aware Cyber-Physical Systems.

file

Visible to the public CPS: Frontier: SONYC: A Cyber-Physical System for Monitoring, Analysis and Mitigation of Urban Noise Pollution

The SONYC project is a smart cities initiative focused on developing a cyber-physical system (CPS) for the monitoring, analysis and mitigation of urban noise pollution. Noise pollution is one of the topmost quality of life issues for urban residents in the U.S. with proven effects on health, education, the economy, and the environment.

file

Visible to the public CPS/Synergy/Collab: CybernizingMechanical Structures through Integrated Sensor-Structure Fabrication–The Data Science Aspects

In this NSF project, the team proposes to innovate a novel printing scheme that can embed piezoelectric transducers (namely, sensor/actuator coupled elements) into layered composites. As the transducers are densely distributed throughout the entire structure, they function like a nerve system embedded into the structure. Such a sensor nerve system, when combined with new control and command systems and advanced data and signal processing capability, can fully unleash the latest computing power to pinpoint the fault location.

file

Visible to the public CPS: Breakthrough: Collaborative Research: WARP: Wide Area assisted Resilient Protection

The overarching goal is to employ a Wide-Area measurement-aided supervisory layer for correcting maloperation in relays, which can prevent system-wide blackouts. PSU's task in this project is to ensure distinction between disturbance outlier and anomalous outlier in such Wide-Area measurements. This poster presents a Principal Component Analysis (PCA)-based method for online characterization of outliers in Wide-Area synchrophasor measurements. To that end, a linearized framework is established to analyze dynamical response from a system under nominal and off-nominal (e.g.