CCSS

group_project

Visible to the public CCSS: Collaborative Research: Towards Privacy-Preserving Mobile Crowd Sensing: A Multi-Stage Solution

Mobile devices, including smartphones and tablets, are becoming extremely prevalent nowadays. Equipped with diverse sensors, from GPS to camera, and paired with the inherent mobility of their owners, mobile devices are capable of acquiring rich information of surrounding environment. However, the wide adoption of mobile crowd sensing is largely hindered by its privacy concerns.

group_project

Visible to the public CCSS: Collaborative Research: Developing A Physical-Channel Based Lightweight Authentication System for Wireless Body Area Networks

Non-intrusive and ambulatory health monitoring of patients? vital signs over Wireless Body Area Networks (WBANs) provides an economical solution to rising costs in the healthcare system. However, due to the lack of security in the operation and communication of resource-constrained medical sensor nodes, the health and medical information provided by the WBANs may not be trusted. To address this issue, lightweight security solutions that are suitable for capability and resource limited body sensor devices must be provided to authenticate the data transmission.

group_project

Visible to the public CCSS: Collaborative Research: Developing A Physical-Channel Based Lightweight Authentication System for Wireless Body Area Networks

Non-intrusive and ambulatory health monitoring of patients' vital signs over Wireless Body Area Networks (WBANs) provides an economical solution to rising costs in the healthcare system. However, due to the lack of security in the operation and communication of resource-constrained medical sensor nodes, the health and medical information provided by the WBANs may not be trusted. To address this issue, lightweight security solutions that are suitable for capability and resource limited body sensor devices must be provided to authenticate the data transmission.

group_project

Visible to the public  CCSS: Collaborative Research: Developing A Physical-Channel Based Lightweight Authentication System for Wireless Body Area Networks

Non-intrusive and ambulatory health monitoring of patients? vital signs over Wireless Body Area Networks (WBANs) provides an economical solution to rising costs in the healthcare system. However, due to the lack of security in the operation and communication of resource-constrained medical sensor nodes, the health and medical information provided by the WBANs may not be trusted. To address this issue, lightweight security solutions that are suitable for capability and resource limited body sensor devices must be provided to authenticate the data transmission.