Biblio

Found 3403 results

Filters: First Letter Of Last Name is A  [Clear All Filters]
2017-03-07
Nanda, Mangala Gowri, Arun-Kumar, S..  2016.  Decompiling Boolean Expressions from Java™ Bytecode. Proceedings of the 9th India Software Engineering Conference. :59–69.

Java bytecode obfuscates the original structure of a Java expression in the source code. So a simple expression such as (c1 {\textbackslash}textbar{\textbackslash}textbar c2) or (c1 && c2) may be captured in the bytecode in 4 different ways (as shown in the paper). And correspondingly, when we reconvert the bytecode back into Java source code, there are four different ways this may happen. Further, although gotos are not permitted in the Java source code, the bytecode is full of gotos. If you were to blindly convert the bytecode into Java source code, then you would replace a goto by a labeled break. A labeled break has the advantage that it only allows you to break out of a block structure and (unlike a setjump) does not permit you to jump arbitrarily into a block structure. So while the data structures used in the regenerated Java source code are still relatively "clean" arbitrary usage of labeled breaks makes for unreadable code (as we show in the paper). And this can be a point of concern, since decompilation is generally related to debugging code. Instead of dumping arbitrary labeled breaks, we try to reconstruct the original expression, in terms of && and {\textbackslash}textbar{\textbackslash}textbar clauses as well as ternary operators "?:" (c0 ? c1 : c2); Thus our goal is quite simply to regenerate, without using goto or labeled breaks, the expressions as close to the original as possible (it is not possible to guarantee an exact match). In this paper we explain what is the state of the art in Java decompilers for decoding complex expressions. Then we will present our solution. We have implemented the algorithms described here in this paper and give you our experience with it.

2018-05-15
Lore, Kin Gwn, Sweet, Nicholas, Kumar, Kundan, Ahmed, Nisar, Sarkar, Soumik.  2016.  Deep value of information estimators for collaborative human-machine information gathering. Cyber-Physical Systems (ICCPS), 2016 ACM/IEEE 7th International Conference on. :1–10.
2017-11-20
Anderson, Hyrum S., Woodbridge, Jonathan, Filar, Bobby.  2016.  DeepDGA: Adversarially-Tuned Domain Generation and Detection. Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. :13–21.

Many malware families utilize domain generation algorithms (DGAs) to establish command and control (C&C) connections. While there are many methods to pseudorandomly generate domains, we focus in this paper on detecting (and generating) domains on a per-domain basis which provides a simple and flexible means to detect known DGA families. Recent machine learning approaches to DGA detection have been successful on fairly simplistic DGAs, many of which produce names of fixed length. However, models trained on limited datasets are somewhat blind to new DGA variants. In this paper, we leverage the concept of generative adversarial networks to construct a deep learning based DGA that is designed to intentionally bypass a deep learning based detector. In a series of adversarial rounds, the generator learns to generate domain names that are increasingly more difficult to detect. In turn, a detector model updates its parameters to compensate for the adversarially generated domains. We test the hypothesis of whether adversarially generated domains may be used to augment training sets in order to harden other machine learning models against yet-to-be-observed DGAs. We detail solutions to several challenges in training this character-based generative adversarial network. In particular, our deep learning architecture begins as a domain name auto-encoder (encoder + decoder) trained on domains in the Alexa one million. Then the encoder and decoder are reassembled competitively in a generative adversarial network (detector + generator), with novel neural architectures and training strategies to improve convergence.

2018-05-27
2016-10-06
Jing Chen, Aiping Xiong, Ninghui Li, Robert Proctor.  2016.  The description-experience gap in the effect of warning reliability on user trust, reliance, and performance in a phishing context.

Automation reliability is an important factor that may affect human trust in automation, which has been shown to strongly influence the way the human operator interacts with the automated system. If the trust level is too low, the human operator may not utilize the automated system as expected; if the trust level is too high, the over-trust may lead to automation biases. In these cases, the overall system performance will be undermined --- after all, the ultimate goal of human-automation collaboration is to improve performance beyond what would be achieved with either alone. Most of the past research has manipulated the automation reliability through “experience”. That is, participants perform a certain task with an automated system that has a certain level of reliability (e.g., an automated warning system providing valid warnings 75% of the times). During or after the task, participants’ trust and reliance on the automated system is measured, as well as the performance. However, research has shown that participants’ perceived reliability usually differs from the actual reliability. In a real-world situation, it is very likely that the exact reliability can be described to the human operator (i.e., through “description”). A description-experience gap has been found robustly in human decision-making studies, according to which there are systematic differences between decisions made from description and decisions from experience. The current study examines the possible description-experience gap in the effect of automation reliability on human trust, reliance, and performance in the context of phishing. Specifically, the research investigates how the reliability of phishing warnings influences people's decisions about whether to proceed upon receiving the warning. The effect of the reliability of an automated phishing warning system is manipulated through experience with the system or through description of it. These two types of manipulations are directly compared, and the measures of interest are human trust in the warning (a subjective rating of how trustable the warning system is), human reliance on the automated system (an objective measure of whether the participants comply with the system’s warnings), and performance (the overall quality of the decisions made).

Jing Chen, Aiping Xiong, Ninghui Li, Robert Proctor.  2016.  The description-experience gap in the effect of warning reliability on user trust, reliance, and performance in a phishing context.

Automation reliability is an important factor that may affect human trust in automation, which has been shown to strongly influence the way the human operator interacts with the automated system. If the trust level is too low, the human operator may not utilize the automated system as expected; if the trust level is too high, the over-trust may lead to automation biases. In these cases, the overall system performance will be undermined --- after all, the ultimate goal of human-automation collaboration is to improve performance beyond what would be achieved with either alone. Most of the past research has manipulated the automation reliability through “experience”. That is, participants perform a certain task with an automated system that has a certain level of reliability (e.g., an automated warning system providing valid warnings 75% of the times). During or after the task, participants’ trust and reliance on the automated system is measured, as well as the performance. However, research has shown that participants’ perceived reliability usually differs from the actual reliability. In a real-world situation, it is very likely that the exact reliability can be described to the human operator (i.e., through “description”). A description-experience gap has been found robustly in human decision-making studies, according to which there are systematic differences between decisions made from description and decisions from experience. The current study examines the possible description-experience gap in the effect of automation reliability on human trust, reliance, and performance in the context of phishing. Specifically, the research investigates how the reliability of phishing warnings influences people's decisions about whether to proceed upon receiving the warning. The effect of the reliability of an automated phishing warning system is manipulated through experience with the system or through description of it. These two types of manipulations are directly compared, and the measures of interest are human trust in the warning (a subjective rating of how trustable the warning system is), human reliance on the automated system (an objective measure of whether the participants comply with the system’s warnings), and performance (the overall quality of the decisions made).

Jing Chen, Aiping Xiong, Ninghui Li, Robert Proctor.  2016.  The description-experience gap in the effect of warning reliability on user trust, reliance, and performance in a phishing context.

Automation reliability is an important factor that may affect human trust in automation, which has been shown to strongly influence the way the human operator interacts with the automated system. If the trust level is too low, the human operator may not utilize the automated system as expected; if the trust level is too high, the over-trust may lead to automation biases. In these cases, the overall system performance will be undermined --- after all, the ultimate goal of human-automation collaboration is to improve performance beyond what would be achieved with either alone. Most of the past research has manipulated the automation reliability through “experience”. That is, participants perform a certain task with an automated system that has a certain level of reliability (e.g., an automated warning system providing valid warnings 75% of the times). During or after the task, participants’ trust and reliance on the automated system is measured, as well as the performance. However, research has shown that participants’ perceived reliability usually differs from the actual reliability. In a real-world situation, it is very likely that the exact reliability can be described to the human operator (i.e., through “description”). A description-experience gap has been found robustly in human decision-making studies, according to which there are systematic differences between decisions made from description and decisions from experience. The current study examines the possible description-experience gap in the effect of automation reliability on human trust, reliance, and performance in the context of phishing. Specifically, the research investigates how the reliability of phishing warnings influences people's decisions about whether to proceed upon receiving the warning. The effect of the reliability of an automated phishing warning system is manipulated through experience with the system or through description of it. These two types of manipulations are directly compared, and the measures of interest are human trust in the warning (a subjective rating of how trustable the warning system is), human reliance on the automated system (an objective measure of whether the participants comply with the system’s warnings), and performance (the overall quality of the decisions made).

2017-08-18
Aljamea, Moudhi M., Iliopoulos, Costas S., Samiruzzaman, M..  2016.  Detection Of URL In Image Steganography. Proceedings of the International Conference on Internet of Things and Cloud Computing. :23:1–23:6.

Steganography is the science of hiding data within data. Either for the good purpose of secret communication or for the bad intention of leaking sensitive confidential data or embedding malicious code or URL. However, many different carrier file formats can be used to hide these data (network, audio, image..etc) but the most common steganography carrier is embedding secret data within images as it is considered to be the best and easiest way to hide all types of files (secret files) within an image using different formats (another image, text, video, virus, URL..etc). To the human eye, the changes in the image appearance with the hidden data can be imperceptible. In fact, images can be more than what we see with our eyes. Therefore, many solutions where proposed to help in detecting these hidden data but each solution have their own strong and weak points either by the limitation of resolving one type of image along with specific hiding technique and or most likely without extracting the hidden data. This paper intends to propose a novel detection approach that will concentrate on detecting any kind of hidden URL in all types of images and extract the hidden URL from the carrier image that used the LSB least significant bit hiding technique.

2018-05-28
2016-04-10
2016-04-11
Roy Dong, Walid Krichene, Alexandre M. Bayen, S. Shankar Sastry.  2016.  Differential Privacy of Populations in Routing Games. CoRR. abs/1601.04041

As our ground transportation infrastructure modernizes, the large amount of data being measured, transmitted, and stored motivates an analysis of the privacy aspect of these emerging cyber-physical technologies. In this paper, we consider privacy in the routing game, where the origins and destinations of drivers are considered private. This is motivated by the fact that this spatiotemporal information can easily be used as the basis for inferences for a person's activities. More specifically, we consider the differential privacy of the mapping from the amount of flow for each origin-destination pair to the traffic flow measurements on each link of a traffic network. We use a stochastic online learning framework for the population dynamics, which is known to converge to the Nash equilibrium of the routing game. We analyze the sensitivity of this process and provide theoretical guarantees on the convergence rates as well as differential privacy values for these models. We confirm these with simulations on a small example.

2017-10-13
Barthe, Gilles, Farina, Gian Pietro, Gaboardi, Marco, Arias, Emilio Jesus Gallego, Gordon, Andy, Hsu, Justin, Strub, Pierre-Yves.  2016.  Differentially Private Bayesian Programming. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :68–79.

We present PrivInfer, an expressive framework for writing and verifying differentially private Bayesian machine learning algorithms. Programs in PrivInfer are written in a rich functional probabilistic programming language with constructs for performing Bayesian inference. Then, differential privacy of programs is established using a relational refinement type system, in which refinements on probability types are indexed by a metric on distributions. Our framework leverages recent developments in Bayesian inference, probabilistic programming languages, and in relational refinement types. We demonstrate the expressiveness of PrivInfer by verifying privacy for several examples of private Bayesian inference.

2017-05-30
Jadhao, Ankita R., Agrawal, Avinash J..  2016.  A Digital Forensics Investigation Model for Social Networking Site. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :130:1–130:4.

Social Networking is fundamentally shifting the way we communicate, sharing idea and form opinions. All people try to use social media for there need, people from every age group are involved in social media site or e-commerce site. Nowadays almost every illegal activity is happened using the social network and instant messages. It means that present system is not capable to found all suspicious words. In this paper, we provided a brief description of problem and review on the different framework developed so far. Propose a better system which can be indentify criminal activity through social networking more efficiently. Use Ontology Based Information Extraction (OBIE) technique to identify domain of word and Association Rule mining to generate rules. Heuristic method checks in user database for malicious users according to predefine elements and Naïve Bayes method is use to identify the context behind the message or post. The experimental result is used for further action on victim by cyber crime department.

2018-05-27
Raković, Saša V, Levine, William S, Açıkmeşe, Behçet.  2016.  Discretely generalized model predictive control. American Control Conference (ACC), 2016. :26–31.
2018-05-17
2018-05-23
2018-05-17
2017-10-13
Aydin, Kevin, Bateni, MohammadHossein, Mirrokni, Vahab.  2016.  Distributed Balanced Partitioning via Linear Embedding. Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. :387–396.

Balanced partitioning is often a crucial first step in solving large-scale graph optimization problems: in some cases, a big graph is chopped into pieces that fit on one machine to be processed independently before stitching the results together, leading to certain suboptimality from the interaction among different pieces. In other cases, links between different parts may show up in the running time and/or network communications cost, hence the desire to have small cut size. We study a distributed balanced partitioning problem where the goal is to partition the vertices of a given graph into k pieces, minimizing the total cut size. Our algorithm is composed of a few steps that are easily implementable in distributed computation frameworks, e.g., MapReduce. The algorithm first embeds nodes of the graph onto a line, and then processes nodes in a distributed manner guided by the linear embedding order. We examine various ways to find the first embedding, e.g., via a hierarchical clustering or Hilbert curves. Then we apply four different techniques such as local swaps, minimum cuts on partition boundaries, as well as contraction and dynamic programming. Our empirical study compares the above techniques with each other, and to previous work in distributed algorithms, e.g., a label propagation method, FENNEL and Spinner. We report our results both on a private map graph and several public social networks, and show that our results beat previous distributed algorithms: we notice, e.g., 15-25% reduction in cut size over [UB13]. We also observe that our algorithms allow for scalable distributed implementation for any number of partitions. Finally, we apply our techniques for the Google Maps Driving Directions to minimize the number of multi-shard queries with the goal of saving in CPU usage. During live experiments, we observe an ≈ 40% drop in the number of multi-shard queries when comparing our method with a standard geography-based method.

2017-11-13
Patti, E., Syrri, A. L. A., Jahn, M., Mancarella, P., Acquaviva, A., Macii, E..  2016.  Distributed Software Infrastructure for General Purpose Services in Smart Grid. IEEE Transactions on Smart Grid. 7:1156–1163.

In this paper, the design of an event-driven middleware for general purpose services in smart grid (SG) is presented. The main purpose is to provide a peer-to-peer distributed software infrastructure to allow the access of new multiple and authorized actors to SGs information in order to provide new services. To achieve this, the proposed middleware has been designed to be: 1) event-based; 2) reliable; 3) secure from malicious information and communication technology attacks; and 4) to enable hardware independent interoperability between heterogeneous technologies. To demonstrate practical deployment, a numerical case study applied to the whole U.K. distribution network is presented, and the capabilities of the proposed infrastructure are discussed.

2017-03-20
Ferreira, Gabriel, Malik, Momin, Kästner, Christian, Pfeffer, Jürgen, Apel, Sven.  2016.  Do İfdefs Influence the Occurrence of Vulnerabilities? An Empirical Study of the Linux Kernel Proceedings of the 20th International Systems and Software Product Line Conference. :65–73.

Preprocessors support the diversification of software products with \#ifdefs, but also require additional effort from developers to maintain and understand variable code. We conjecture that \#ifdefs cause developers to produce more vulnerable code because they are required to reason about multiple features simultaneously and maintain complex mental models of dependencies of configurable code. We extracted a variational call graph across all configurations of the Linux kernel, and used configuration complexity metrics to compare vulnerable and non-vulnerable functions considering their vulnerability history. Our goal was to learn about whether we can observe a measurable influence of configuration complexity on the occurrence of vulnerabilities. Our results suggest, among others, that vulnerable functions have higher variability than non-vulnerable ones and are also constrained by fewer configuration options. This suggests that developers are inclined to notice functions appear in frequently-compiled product variants. We aim to raise developers' awareness to address variability more systematically, since configuration complexity is an important, but often ignored aspect of software product lines.

Ferreira, Gabriel, Malik, Momin, Kästner, Christian, Pfeffer, Jürgen, Apel, Sven.  2016.  Do İfdefs Influence the Occurrence of Vulnerabilities? An Empirical Study of the Linux Kernel Proceedings of the 20th International Systems and Software Product Line Conference. :65–73.

Preprocessors support the diversification of software products with \#ifdefs, but also require additional effort from developers to maintain and understand variable code. We conjecture that \#ifdefs cause developers to produce more vulnerable code because they are required to reason about multiple features simultaneously and maintain complex mental models of dependencies of configurable code. We extracted a variational call graph across all configurations of the Linux kernel, and used configuration complexity metrics to compare vulnerable and non-vulnerable functions considering their vulnerability history. Our goal was to learn about whether we can observe a measurable influence of configuration complexity on the occurrence of vulnerabilities. Our results suggest, among others, that vulnerable functions have higher variability than non-vulnerable ones and are also constrained by fewer configuration options. This suggests that developers are inclined to notice functions appear in frequently-compiled product variants. We aim to raise developers' awareness to address variability more systematically, since configuration complexity is an important, but often ignored aspect of software product lines.

2017-09-19
Bor, Martin C., Roedig, Utz, Voigt, Thiemo, Alonso, Juan M..  2016.  Do LoRa Low-Power Wide-Area Networks Scale? Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. :59–67.

New Internet of Things (IoT) technologies such as Long Range (LoRa) are emerging which enable power efficient wireless communication over very long distances. Devices typically communicate directly to a sink node which removes the need of constructing and maintaining a complex multi-hop network. Given the fact that a wide area is covered and that all devices communicate directly to a few sink nodes a large number of nodes have to share the communication medium. LoRa provides for this reason a range of communication options (centre frequency, spreading factor, bandwidth, coding rates) from which a transmitter can choose. Many combination settings are orthogonal and provide simultaneous collision free communications. Nevertheless, there is a limit regarding the number of transmitters a LoRa system can support. In this paper we investigate the capacity limits of LoRa networks. Using experiments we develop models describing LoRa communication behaviour. We use these models to parameterise a LoRa simulation to study scalability. Our experiments show that a typical smart city deployment can support 120 nodes per 3.8 ha, which is not sufficient for future IoT deployments. LoRa networks can scale quite well, however, if they use dynamic communication parameter selection and/or multiple sinks.

2017-03-07
Agnihotri, Lalitha, Mojarad, Shirin, Lewkow, Nicholas, Essa, Alfred.  2016.  Educational Data Mining with Python and Apache Spark: A Hands-on Tutorial. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge. :507–508.

Enormous amount of educational data has been accumulated through Massive Open Online Courses (MOOCs), as well as commercial and non-commercial learning platforms. This is in addition to the educational data released by US government since 2012 to facilitate disruption in education by making data freely available. The high volume, variety and velocity of collected data necessitate use of big data tools and storage systems such as distributed databases for storage and Apache Spark for analysis. This tutorial will introduce researchers and faculty to real-world applications involving data mining and predictive analytics in learning sciences. In addition, the tutorial will introduce statistics required to validate and accurately report results. Topics will cover how big data is being used to transform education. Specifically, we will demonstrate how exploratory data analysis, data mining, predictive analytics, machine learning, and visualization techniques are being applied to educational big data to improve learning and scale insights driven from millions of student's records. The tutorial will be held over a half day and will be hands on with pre-posted material. Due to the interdisciplinary nature of work, the tutorial appeals to researchers from a wide range of backgrounds including big data, predictive analytics, learning sciences, educational data mining, and in general, those interested in how big data analytics can transform learning. As a prerequisite, attendees are required to have familiarity with at least one programming language.

2017-09-05
Huang, Xu, Ahmed, Muhammad R., Rojas, Raul Fernandez, Cui, Hongyan, Aseeri, Mohammed.  2016.  Effective Algorithm for Protecting WSNs from Internal Attacks in Real-time. Proceedings of the Australasian Computer Science Week Multiconference. :40:1–40:7.

Wireless sensor networks (WSNs) are playing a vital role in collecting data about a natural or built environment. WSNs have attractive advantages such as low-cost, low maintains and flexible arrangements for applications. Wireless sensor network has been used for many different applications such as military implementations in a battlefield, an environmental monitoring, and multifunction in health sector. In order to ensure its functionality, especially in malicious environments, security mechanisms become essential. Especially internal attacks have gained prominence and pose most challenging threats to all WSNs. Although, a number of works have been done to discuss a WSN under the internal attacks it has gained little attention. For example, the conventional cryptographic technique does not give the appropriated security to save the network from internal attack that causes by abnormally behaviour at the legitimate nodes in a network. In this paper, we propose an effective algorithm to make an evaluation for detecting internal attack by multi-criteria in real time. This protecting is based on the combination of the multiple pieces of evidences collected from the nodes under an internal attacker in a network. A theory of the decision is carefully discussed based on the Dempster-Shafer Theory (DST). If you really wanted to make sure the designed network works exactly works as you expected, you will be benefited from this algorithm. The advantage of this proposed method is not just its performance in real-time but also it is effective as it does not need the knowledge about the normal or malicious node in advance with very high average accuracy that is close to 100%. It also can be used as one of maintaining tools for the regulations of the deployed WSNs.

2018-05-15
Adel Dokhanchi, Bardh Hoxha, Cumhur Erkan Tuncali, Georgios Fainekos.  2016.  An efficient algorithm for monitoring practical TPTL specifications. 14th ACM-IEEE International Conference on Formal Methods and Models for System Design. :184-193.