Biblio
Modern smartphone platforms implement permission-based models to protect access to sensitive data and system resources. However, apps can circumvent the permission model and gain access to protected data without user consent by using both covert and side channels. Side channels present in the implementation of the permission system allow apps to access protected data and system resources without permission; whereas covert channels enable communication between two colluding apps so that one app can share its permission-protected data with another app lacking those permissions. Both pose threats to user privacy.
In this work, we make use of our infrastructure that runs hundreds of thousands of apps in an instrumented environment. This testing environment includes mechanisms to monitor apps' runtime behaviour and network traffic. We look for evidence of side and covert channels being used in practice by searching for sensitive data being sent over the network for which the sending app did not have permissions to access it. We then reverse engineer the apps and third-party libraries responsible for this behaviour to determine how the unauthorized access occurred. We also use software fingerprinting methods to measure the static prevalence of the technique that we discover among other apps in our corpus.
Using this testing environment and method, we uncovered a number of side and covert channels in active use by hundreds of popular apps and third-party SDKs to obtain unauthorized access to both unique identifiers as well as geolocation data. We have responsibly disclosed our findings to Google and have received a bug bounty for our work.
One of the main pillars of connected health is the application of technology to provide healthcare services remotely. Electronic health records are integrated with remote patient monitoring systems using various sensors. However, these ecosystems raise many privacy and security concerns. This paper analyzes and proposes a fog-based solution to address privacy and security challenges in connected health. Privacy protection is investigated for two types of data: less invasive sensors, such as sleep monitor; and highly invasive sensors, such as microphones. In this paper, we show how adding computing resources in the edge can improve privacy and data security, while reducing the computational and bandwidth cost in the cloud.
Cryptographically cloud computing may be an innovative safe cloud computing design. Cloud computing may be a huge size dispersed computing model that ambitious by the economy of the level. It integrates a group of inattentive virtualized animatedly scalable and managed possessions like computing control storage space platform and services. External end users will approach to resources over the net victimization fatal particularly mobile terminals, Cloud's architecture structures are advances in on-demand new trends. That are the belongings are animatedly assigned to a user per his request and hand over when the task is finished. So, this paper projected biometric coding to boost the confidentiality in Cloud computing for biometric knowledge. Also, this paper mentioned virtualization for Cloud computing also as statistics coding. Indeed, this paper overviewed the safety weaknesses of Cloud computing and the way biometric coding will improve the confidentiality in Cloud computing atmosphere. Excluding this confidentiality is increased in Cloud computing by victimization biometric coding for biometric knowledge. The novel approach of biometric coding is to reinforce the biometric knowledge confidentiality in Cloud computing. Implementation of identification mechanism can take the security of information and access management in the cloud to a higher level. This section discusses, however, a projected statistics system with relation to alternative recognition systems to date is a lot of advantageous and result oriented as a result of it does not work on presumptions: it's distinctive and provides quick and contact less authentication. Thus, this paper reviews the new discipline techniques accustomed to defend methodology encrypted info in passing remote cloud storage.
Utilization of Wireless sensor network is growing with the development in modern technologies. On other side electromagnetic spectrum is limited resources. Application of wireless communication is expanding day by day which directly threaten electromagnetic spectrum band to become congested. Cognitive Radio solves this issue by implementation of unused frequency bands as "White Space". There is another important factor that gets attention in cognitive model i.e: Wireless Security. One of the famous causes of security threat is malicious node in cognitive radio wireless sensor networks (CRWSN). The goal of this paper is to focus on security issues which are related to CRWSN as Fusion techniques, Co-operative Spectrum sensing along with two dangerous attacks in CR: Primary User Emulation (PUE) and Spectrum Sensing Data Falsification (SSDF).
Industrial control systems (ICS) are systems used in critical infrastructures for supervisory control, data acquisition, and industrial automation. ICS systems have complex, component-based architectures with many different hardware, software, and human factors interacting in real time. Despite the importance of security concerns in industrial control systems, there has not been a comprehensive study that examined common security architectural weaknesses in this domain. Therefore, this paper presents the first in-depth analysis of 988 vulnerability advisory reports for Industrial Control Systems developed by 277 vendors. We performed a detailed analysis of the vulnerability reports to measure which components of ICS have been affected the most by known vulnerabilities, which security tactics were affected most often in ICS and what are the common architectural security weaknesses in these systems. Our key findings were: (1) Human-Machine Interfaces, SCADA configurations, and PLCs were the most affected components, (2) 62.86% of vulnerability disclosures in ICS had an architectural root cause, (3) the most common architectural weaknesses were “Improper Input Validation”, followed by “Im-proper Neutralization of Input During Web Page Generation” and “Improper Authentication”, and (4) most tactic-related vulnerabilities were related to the tactics “Validate Inputs”, “Authenticate Actors” and “Authorize Actors”.
Cloud computing is widely believed to be the future of computing. It has grown from being a promising idea to one of the fastest research and development paradigms of the computing industry. However, security and privacy concerns represent a significant hindrance to the widespread adoption of cloud computing services. Likewise, the attributes of the cloud such as multi-tenancy, dynamic supply chain, limited visibility of security controls and system complexity, have exacerbated the challenge of assessing cloud risks. In this paper, we conduct a real-world case study to validate the use of a supply chaininclusive risk assessment model in assessing the risks of a multicloud SaaS application. Using the components of the Cloud Supply Chain Cyber Risk Assessment (CSCCRA) model, we show how the model enables cloud service providers (CSPs) to identify critical suppliers, map their supply chain, identify weak security spots within the chain, and analyse the risk of the SaaS application, while also presenting the value of the risk in monetary terms. A key novelty of the CSCCRA model is that it caters for the complexities involved in the delivery of SaaS applications and adapts to the dynamic nature of the cloud, enabling CSPs to conduct risk assessments at a higher frequency, in response to a change in the supply chain.
Ransomware, as a specialized form of malicious software, has recently emerged as a major threat in computer security. With an ability to lock out user access to their content, recent ransomware attacks have caused severe impact at an individual and organizational level. While research in malware detection can be adapted directly for ransomware, specific structural properties of ransomware can further improve the quality of detection. In this paper, we adapt the deep learning methods used in malware detection for detecting ransomware from emulation sequences. We present specialized recurrent neural networks for capturing local event patterns in ransomware sequences using the concept of attention mechanisms. We demonstrate the performance of enhanced LSTM models on a sequence dataset derived by the emulation of ransomware executables targeting the Windows environment.
This article is dedicated to the study of an innovative architecture for the conversion of renewable marine energy into electrical energy. It consists of a Permanent Magnet Synchronous Generator (PMSG) combined with a three-phase Vienna rectifier. This last converter is not reversible but has the advantage of minimizing the number of active switches. This improves the operational reliability of the chain, which is necessary in the context of marine energy exploitation where access to the installations is not easy. The study focuses on the behavior analysis of electrical chain conversion, and the study of phase and neutral current according to the conduction’s states of the switches of the Vienna rectifier is being investigated. Despite the high non-linearity of this architecture, this control is made possible through to the dynamic performance and control of the maximum switching frequency of the self-oscillating controller called the Phase-Shift Self-Oscillating Current Controller (PSSOCC).
Phishing attacks are prevalent and humans are central to this online identity theft attack, which aims to steal victims' sensitive and personal information such as username, password, and online banking details. There are many antiphishing tools developed to thwart against phishing attacks. Since humans are the weakest link in phishing, it is important to educate them to detect and avoid phishing attacks. One can argue self-efficacy is one of the most important determinants of individual's motivation in phishing threat avoidance behaviour, which has co-relation with knowledge. The proposed research endeavours on the user's self-efficacy in order to enhance the individual's phishing threat avoidance behaviour through their motivation. Using social cognitive theory, we explored that various knowledge attributes such as observational (vicarious) knowledge, heuristic knowledge and structural knowledge contributes immensely towards the individual's self-efficacy to enhance phishing threat prevention behaviour. A theoretical framework is then developed depicting the mechanism that links knowledge attributes, self-efficacy, threat avoidance motivation that leads to users' threat avoidance behaviour. Finally, a gaming prototype is designed incorporating the knowledge elements identified in this research that aimed to enhance individual's self-efficacy in phishing threat avoidance behaviour.
The rapid rise of cyber-crime activities and the growing number of devices threatened by them place software security issues in the spotlight. As around 90% of all attacks exploit known types of security issues, finding vulnerable components and applying existing mitigation techniques is a viable practical approach for fighting against cyber-crime. In this paper, we investigate how the state-of-the-art machine learning techniques, including a popular deep learning algorithm, perform in predicting functions with possible security vulnerabilities in JavaScript programs. We applied 8 machine learning algorithms to build prediction models using a new dataset constructed for this research from the vulnerability information in public databases of the Node Security Project and the Snyk platform, and code fixing patches from GitHub. We used static source code metrics as predictors and an extensive grid-search algorithm to find the best performing models. We also examined the effect of various re-sampling strategies to handle the imbalanced nature of the dataset. The best performing algorithm was KNN, which created a model for the prediction of vulnerable functions with an F-measure of 0.76 (0.91 precision and 0.66 recall). Moreover, deep learning, tree and forest based classifiers, and SVM were competitive with F-measures over 0.70. Although the F-measures did not vary significantly with the re-sampling strategies, the distribution of precision and recall did change. No re-sampling seemed to produce models preferring high precision, while re-sampling strategies balanced the IR measures.
This paper explores using chaos-based cryptography for transmitting multimedia data, mainly speech and voice messages, over public communication channels, such as the internet. The secret message to be transmitted is first converted into a one-dimensional time series, that can be cast in a digital/binary format. The main feature of the proposed technique is mapping the two levels of every corresponding bit of the time series into different multiple chaotic orbits, using a simple encryption function. This one-to-many mapping robustifies the encryption technique and makes it resilient to crypto-analysis methods that rely on associating the energy level of the signal into two binary levels, using return map attacks. A chaotic nonautonomous Duffing oscillator is chosen to implement the suggested technique, using three different parameters that are assumed unknown at the receiver side. Synchronization between the transmitter and the receiver and reconstructing the secret message, at the receiver side, is done using a Lyapunov-based adaptive technique. Achieving stable operation, tuning the required control gains, as well as effective utilization of the bandwidth of the public communication channel are investigated. Two different case studies are presented; the first one deals with text that can be expressed as 8-bit ASCII code, while the second one corresponds to an analog acoustic signal that corresponds to the voice associated with pronouncing a short sentence. Advantages and limitation of the proposed technique are highlighted, while suggesting extensions to other multimedia signals, along with their required additional computational effort.
Today, there are several applications which allow us to share images over the internet. All these images must be stored in a secure manner and should be accessible only to the intended recipients. Hence it is of utmost importance to develop efficient and fast algorithms for encryption of images. This paper uses chaotic generators to generate random sequences which can be used as keys for image encryption. These sequences are seemingly random and have statistical properties. This makes them resistant to analysis and correlation attacks. However, these sequences have fixed cycle lengths. This restricts the number of sequences that can be used as keys. This paper utilises neural networks as a source of perturbation in a chaotic generator and uses its output to encrypt an image. The robustness of the encryption algorithm can be verified using NPCR, UACI, correlation coefficient analysis and information entropy analysis.
Cyber Physical Systems (CPS)-Internet of Things (IoT) enabled healthcare services and infrastructures improve human life, but are vulnerable to a variety of emerging cyber-attacks. Cybersecurity specialists are finding it hard to keep pace of the increasingly sophisticated attack methods. There is a critical need for innovative cognitive cybersecurity for CPS-IoT enabled healthcare ecosystem. This paper presents a cognitive cybersecurity framework for simulating the human cognitive behaviour to anticipate and respond to new and emerging cybersecurity and privacy threats to CPS-IoT and critical infrastructure systems. It includes the conceptualisation and description of a layered architecture which combines Artificial Intelligence, cognitive methods and innovative security mechanisms.
Java programming language is considered highly important due to its extensive use in the development of web, desktop as well as handheld devices applications. Implementing Java Coding standards on Java code has great importance as it creates consistency and as a result better development and maintenance. Finding bugs and standard's violations is important at an early stage of software development than at a later stage when the change becomes impossible or too expensive. In the paper, some tools and research work done on Coding Standard Analyzers is reviewed. These tools are categorized based on the type of rules they cheeked, namely: style, concurrency, exceptions, and quality, security, dependency and general methods of static code analysis. Finally, list of Java Coding Standards Enforcing Tools are analyzed against certain predefined parameters that are limited by the scope of research paper under study. This review will provide the basis for selecting a static code analysis tool that enforce International Java Coding Standards such as the Rule of Ten and the JPL Coding Standards. Such tools have great importance especially in the development of mission/safety critical system. This work can be very useful for developers in selecting a good tool for Java code analysis, according to their requirements.
The computer network is used by billions of people worldwide for variety of purposes. This has made the security increasingly important in networks. It is essential to use Intrusion Detection Systems (IDS) and devices whose main function is to detect anomalies in networks. Mostly all the intrusion detection approaches focuses on the issues of boosting techniques since results are inaccurate and results in lengthy detection process. The major pitfall in network based intrusion detection is the wide-ranging volume of data gathered from the network. In this paper, we put forward a hybrid anomaly based intrusion detection system which uses Classification and Boosting technique. The Paper is organized in such a way it compares the performance three different Classifiers along with boosting. Boosting process maximizes classification accuracy. Results of proposed scheme will analyzed over different datasets like Intrusion Detection Kaggle Dataset and NSL KDD. Out of vast analysis it is found Random tree provides best average Accuracy rate of around 99.98%, Detection rate of 98.79% and a minimum False Alarm rate.
Network security is a general idea to ensure information transmission over PC and portable systems. Elliptic curve cryptosystems are nowadays widely used in public communication channels for network security. Their security relies upon the complexity of clarifying the elliptic curve discrete alogarithm issue. But, there are several general attacks in them. Elliptic bend number juggling is actualized over complex fields to enhance the security of elliptic curve cryptosystems. This paper starts with the qualities of elliptic curve cryptosystems and their security administrations. At that point we talk about limited field number-crunching and its properties, prime field number-crunching, twofold field math and complex number-crunching, and elliptic bend number-crunching over prime field and parallel field. This paper proposes how to execute the unpredictable number of math under prime field and double field utilizing java BigInteger class. also, we actualize elliptic bend math and elliptic bend cryptosystems utilizing complex numbers over prime field and double field and talk about our trials that got from the usage.
One of the effective ways of detecting malicious traffic in computer networks is intrusion detection systems (IDS). Though IDS identify malicious activities in a network, it might be difficult to detect distributed or coordinated attacks because they only have single vantage point. To combat this problem, cooperative intrusion detection system was proposed. In this detection system, nodes exchange attack features or signatures with a view of detecting an attack that has previously been detected by one of the other nodes in the system. Exchanging of attack features is necessary because a zero-day attacks (attacks without known signature) experienced in different locations are not the same. Although this solution enhanced the ability of a single IDS to respond to attacks that have been previously identified by cooperating nodes, malicious activities such as fake data injection, data manipulation or deletion and data consistency are problems threatening this approach. In this paper, we propose a solution that leverages blockchain's distributive technology, tamper-proof ability and data immutability to detect and prevent malicious activities and solve data consistency problems facing cooperative intrusion detection. Focusing on extraction, storage and distribution stages of cooperative intrusion detection, we develop a blockchain-based solution that securely extracts features or signatures, adds extra verification step, makes storage of these signatures and features distributive and data sharing secured. Performance evaluation of the system with respect to its response time and resistance to the features/signatures injection is presented. The result shows that the proposed solution prevents stored attack features or signature against malicious data injection, manipulation or deletion and has low latency.
In this paper we report preliminary results from the novel coupling of cyber-physical emulation and interdiction optimization to better understand the impact of a CrashOverride malware attack on a notional electric system. We conduct cyber experiments where CrashOverride issues commands to remote terminal units (RTUs) that are controlling substations within a power control area. We identify worst-case loss of load outcomes with cyber interdiction optimization; the proposed approach is a bilevel formulation that incorporates RTU mappings to controllable loads, transmission lines, and generators in the upper-level (attacker model), and a DC optimal power flow (DCOPF) in the lower-level (defender model). Overall, our preliminary results indicate that the interdiction optimization can guide the design of experiments instead of performing a “full factorial” approach. Likewise, for systems where there are important dependencies between SCADA/ICS controls and power grid operations, the cyber-physical emulations should drive improved parameterization and surrogate models that are applied in scalable optimization techniques.



