Biblio

Found 3403 results

Filters: First Letter Of Last Name is A  [Clear All Filters]
2020-08-13
Jiang, Wei, Anton, Simon Duque, Dieter Schotten, Hans.  2019.  Intelligence Slicing: A Unified Framework to Integrate Artificial Intelligence into 5G Networks. 2019 12th IFIP Wireless and Mobile Networking Conference (WMNC). :227—232.
The fifth-generation and beyond mobile networks should support extremely high and diversified requirements from a wide variety of emerging applications. It is envisioned that more advanced radio transmission, resource allocation, and networking techniques are required to be developed. Fulfilling these tasks is challenging since network infrastructure becomes increasingly complicated and heterogeneous. One promising solution is to leverage the great potential of Artificial Intelligence (AI) technology, which has been explored to provide solutions ranging from channel prediction to autonomous network management, as well as network security. As of today, however, the state of the art of integrating AI into wireless networks is mainly limited to use a dedicated AI algorithm to tackle a specific problem. A unified framework that can make full use of AI capability to solve a wide variety of network problems is still an open issue. Hence, this paper will present the concept of intelligence slicing where an AI module is instantiated and deployed on demand. Intelligence slices are applied to conduct different intelligent tasks with the flexibility of accommodating arbitrary AI algorithms. Two example slices, i.e., neural network based channel prediction and anomaly detection based industrial network security, are illustrated to demonstrate this framework.
2020-06-15
ALshukri, Dawoud, R, Vidhya Lavanya, P, Sumesh E, Krishnan, Pooja.  2019.  Intelligent Border Security Intrusion Detection using IoT and Embedded systems. 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC). :1–3.
Border areas are generally considered as places where great deal of violence, intrusion and cohesion between several parties happens. This often led to danger for the life of employees, soldiers and common man working or living in border areas. Further geographical conditions like mountains, snow, forest, deserts, harsh weather and water bodies often lead to difficult access and monitoring of border areas. Proposed system uses thermal imaging camera (FLIR) for detection of various objects and infiltrators. FLIR is assigned an IP address and connected through local network to the control center. Software code captures video and subsequently the intrusion detection. A motor controlled spotlight with infrared and laser gun is used to illuminate under various conditions at the site. System also integrates sound sensor to detect specific sounds and motion sensors to sense suspicious movements. Based on the decision, a buzzer and electric current through fence for further protection can be initiated. Sensors are be integrated through IoT for an efficient control of large border area and connectivity between sites.
2020-06-29
Nenova, Maria, Atanasov, Denis, Kassev, Kiril, Nenov, Andon.  2019.  Intrusion Detection System Model Implementation against DDOS attacks. 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). :1–4.
In the paper is presented implementation of a system for detecting intrusion actions. An implementation of intrusion detection systems (IDS), their architectures, and intrusion detection methods are investigated. Analyzed are methods for SNORT (IDS) bandwidth traffic analysis in intrusion detection and prevention systems. The main requirements for Installation and configuration of the system are also discussed. Then the configuration of the firewall policy and specifics there, are also presented. It is also described the database structure, the operating modes, and analysis of the rules. Two of the most commonly implemented attacks and model for defense against them is proposed.
2020-01-27
Qureshi, Ayyaz-Ul-Haq, Larijani, Hadi, Javed, Abbas, Mtetwa, Nhamoinesu, Ahmad, Jawad.  2019.  Intrusion Detection Using Swarm Intelligence. 2019 UK/ China Emerging Technologies (UCET). :1–5.
Recent advances in networking and communication technologies have enabled Internet-of-Things (IoT) devices to communicate more frequently and faster. An IoT device typically transmits data over the Internet which is an insecure channel. Cyber attacks such as denial-of-service (DoS), man-in-middle, and SQL injection are considered as big threats to IoT devices. In this paper, an anomaly-based intrusion detection scheme is proposed that can protect sensitive information and detect novel cyber-attacks. The Artificial Bee Colony (ABC) algorithm is used to train the Random Neural Network (RNN) based system (RNN-ABC). The proposed scheme is trained on NSL-KDD Train+ and tested for unseen data. The experimental results suggest that swarm intelligence and RNN successfully classify novel attacks with an accuracy of 91.65%. Additionally, the performance of the proposed scheme is also compared with a hybrid multilayer perceptron (MLP) based intrusion detection system using sensitivity, mean of mean squared error (MMSE), the standard deviation of MSE (SDMSE), best mean squared error (BMSE) and worst mean squared error (WMSE) parameters. All experimental tests confirm the robustness and high accuracy of the proposed scheme.
2020-02-17
Al-Eryani, Yasser, Baroudi, Uthman.  2019.  An Investigation on Detecting Bad Data Injection Attack in Smart Grid. 2019 International Conference on Computer and Information Sciences (ICCIS). :1–4.
Security and consistency of smart grids is one of the main issues in the design and maintenance of highly controlled and monitored new power grids. Bad data injection attack could lead to disasters such as power system outage, or huge economical losses. In many attack scenarios, the attacker can come up with new attack strategies that couldn't be detected by the traditional bad data detection methods. Adaptive Partitioning State Estimation (APSE) method [3] has been proposed recently to combat such attacks. In this work, we evaluate and compare with a traditional method. The main idea of APSE is to increase the sensitivity of the chi-square test by partitioning the large grids into small ones and apply the test on each partition individually and repeat this procedure until the faulty node is located. Our simulation findings using MATPOWER program show that the method is not consistent where it is sensitive the systems size and the location of faulty nodes as well.
2020-02-10
Shahinzadeh, Hossein, Moradi, Jalal, Gharehpetian, Gevork B., Nafisi, Hamed, Abedi, Mehrdad.  2019.  IoT Architecture for Smart Grids. 2019 International Conference on Protection and Automation of Power System (IPAPS). :22–30.
The tremendous advances in information and communications technology (ICT), as well as the embedded systems, have been led to the emergence of the novel concept of the internet of things (IoT). Enjoying IoT-based technologies, many objects and components can be connected to each other through the internet or other modern communicational platforms. Embedded systems which are computing machines for special purposes like those utilized in high-tech devices, smart buildings, aircraft, and vehicles including advanced controllers, sensors, and meters with the ability of information exchange using IT infrastructures. The phrase "internet", in this context, does not exclusively refer to the World Wide Web rather than any type of server-based or peer-to-peer networks. In this study, the application of IoT in smart grids is addressed. Hence, at first, an introduction to the necessity of deployment of IoT in smart grids is presented. Afterwards, the applications of IoT in three levels of generation, transmission, and distribution is proposed. The generation level is composed of applications of IoT in renewable energy resources, wind and solar in particular, thermal generation, and energy storage facilities. The deployment of IoT in transmission level deals with congestion management in power system and guarantees the security of the system. In the distribution level, the implications of IoT in active distribution networks, smart cities, microgrids, smart buildings, and industrial sector are evaluated.
2020-09-04
Ishak, Muhammad Yusry Bin, Ahmad, Samsiah Binti, Zulkifli, Zalikha.  2019.  Iot Based Bluetooth Smart Radar Door System Via Mobile Apps. 2019 1st International Conference on Artificial Intelligence and Data Sciences (AiDAS). :142—145.
{In the last few decades, Internet of things (IOT) is one of the key elements in industrial revolution 4.0 that used mart phones as one of the best technological advances' intelligent device. It allows us to have power over devices without people intervention, either remote or voice control. Therefore, the “Smart Radar Door “system uses a microcontroller and mobile Bluetooth module as an automation of smart door lock system. It is describing the improvement of a security system integrated with an Android mobile phone that uses Bluetooth as a wireless connection protocol and processing software as a tool in order to detect any object near to the door. The mob ile device is required a password as authentication method by using microcontroller to control lock and unlock door remotely. The Bluetooth protocol was chosen as a method of communication between microcontroller and mobile devices which integrated with many Android devices in secured protocol}.
2020-02-17
Nouichi, Douae, Abdelsalam, Mohamed, Nasir, Qassim, Abbas, Sohail.  2019.  IoT Devices Security Using RF Fingerprinting. 2019 Advances in Science and Engineering Technology International Conferences (ASET). :1–7.
Internet of Things (IoT) devices industry is rapidly growing, with an accelerated increase in the list of manufacturers offering a wide range of smart devices selected to enhance end-users' standard of living. Security remains an after-thought in these devices resulting in vulnerabilities. While there exists a cryptographic protocol designed to solve such authentication problem, the computational complexity of cryptographic protocols and scalability problems make almost all cryptography-based authentication protocols impractical for IoT. Wireless RFF (Radio Frequency Fingerprinting) comes as a physical layer-based security authentication method that improves wireless security authentication, which is especially useful for the power and computing limited devices. As a proof-of-concept, this paper proposes a universal SDR (software defined Radio)-based inexpensive implementation intended to sense emitted wireless signals from IoT devices. Our approach is validated by extracting mobile phone signal bursts under different user-dedicated modes. The proposed setup is well adapted to accurately capture signals from different telecommunication standards. To ensure a unique identification of IoT devices, this paper also provides an optimum set of features useful to generate the device identity fingerprint.
2019-11-25
Weng, Jian-Jian, Alajaji, Fady, Linder, Tamás.  2019.  Joint Source-Channel Coding for the Transmission of Correlated Sources over Two-Way Channels. 2019 IEEE International Symposium on Information Theory (ISIT). :1322–1326.
A joint source-channel coding (JSCC) scheme based on hybrid digital/analog coding is proposed for the transmission of correlated sources over discrete-memoryless two-way channels (DM-TWCs). The scheme utilizes the correlation between the sources in generating channel inputs, thus enabling the users to coordinate their transmission to combat channel noise. The hybrid scheme also subsumes prior coding methods such as rate-one separate source-channel coding and uncoded schemes for two-way lossy transmission, as well as the correlation-preserving coding scheme for (almost) lossless transmission. Moreover, we derive a distortion outer bound for the source-channel system using a genie-aided argument. A complete JSSC theorem for a class of correlated sources and DM-TWCs whose capacity region cannot be enlarged via interactive adaptive coding is also established. Examples that illustrate the theorem are given.
2020-02-10
Awang, Nor Fatimah, Jarno, Ahmad Dahari, Marzuki, Syahaneim, Jamaludin, Nor Azliana Akmal, Majid, Khairani Abd, Tajuddin, Taniza.  2019.  Method For Generating Test Data For Detecting SQL Injection Vulnerability in Web Application. 2019 7th International Conference on Cyber and IT Service Management (CITSM). 7:1–5.
SQL injection is among the most dangerous vulnerabilities in web applications that allow attackers to bypass the authentication and access the application database. Security testing is one of the techniques required to detect the existence of SQL injection vulnerability in a web application. However, inadequate test data during testing can affect the effectiveness of security testing. Therefore, in this paper, the new algorithm is designed and developed by applying the Cartesian Product technique in order to generate a set of invalid test data automatically. A total of 624 invalid test data were generated in order to increase the detection rate of SQL injection vulnerability. Finally, the ideas obtained from our method is able to detect the vulnerability of SQL injection in web application.
2020-02-24
Anand, Shajina, Raja, Gunasekaran, Anand, Gokul, Chauhdary, Sajjad Hussain, Bashir, Ali Kashif.  2019.  Mirage: A Protocol for Decentralized and Secured Communication of IoT Devices. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :1074–1080.
Internet of Things (IoT) is rapidly emerging as the manifestation of the networked society vision. But its centralized architecture will lead to a single point of failure. On the other hand, it will be difficult to handle communications in the near future considering the rapid growth of IoT devices. Along with its popularity, IoT suffers from a lot of vulnerabilities, which IoT developers are constantly working to mitigate. This paper proposes a new protocol called Mirage which can be used for secure and decentralized communication of IoT devices. This protocol is built based on security principles. Out of which Mirage mainly focuses on authentication, integrity, and non-repudiation. In this protocol, devices are authenticated via secret keys known only to the parties involved in the communication. These secret keys are not static and will be constantly changing for every communication. For ensuring integrity, an intermediary is asked to exchange the hash of the messages. As the intermediary nodes are lending their computing and networking powers, they should be rewarded. To ensure non-repudiation, instead of going for trusted third parties, blockchain technology is used. Every node in the network needs to spend a mirage token for sending a message. Mirage tokens will be provided only to those nodes, who help in exchanging the hashes as a reward. In the end, a decentralized network of IoT devices is formed where every node contribute to the security of the network.
2021-04-08
Althebyan, Q..  2019.  A Mobile Edge Mitigation Model for Insider Threats: A Knowledgebase Approach. 2019 International Arab Conference on Information Technology (ACIT). :188—192.
Taking care of security at the cloud is a major issue that needs to be carefully considered and solved for both individuals as well as organizations. Organizations usually expect more trust from employees as well as customers in one hand. On the other hand, cloud users expect their private data is maintained and secured. Although this must be case, however, some malicious outsiders of the cloud as well as malicious insiders who are cloud internal users tend to disclose private data for their malicious uses. Although outsiders of the cloud should be a concern, however, the more serious problems come from Insiders whose malicious actions are more serious and sever. Hence, insiders' threats in the cloud should be the top most problem that needs to be tackled and resolved. This paper aims to find a proper solution for the insider threat problem in the cloud. The paper presents a Mobile Edge Computing (MEC) mitigation model as a solution that suits the specialized nature of this problem where the solution needs to be very close to the place where insiders reside. This in fact gives real-time responses to attack, and hence, reduces the overhead in the cloud.
2020-06-26
Polyakov, Dmitry, Eliseev, Aleksey, Moiseeva, Maria, Alekseev, Vladimir, Kolegov, Konstantin.  2019.  The Model and Algorithm for Ensuring the Survivability of Control Systems of Dynamic Objects in Conditions of Uncertainty. 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA). :41—44.
In the article the problem of survivability evaluation of control systems is considered. Control system is presented as a graph with edges that formalize minimal control systems consist of receiver, transmitter and a communication line connecting them. Based on the assumption that the survivability of minimal control systems is known, the mathematical model of survivability evaluation of not minimal control systems based on fuzzy logic is offered.
2020-11-16
Anju, J., Shreelekshmi, R..  2019.  Modified Feature Descriptors to enhance Secure Content-based Image Retrieval in Cloud. 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). 1:674–680.
With the emergence of cloud, content-based image retrieval (CBIR) on encrypted domain gain enormous importance due to the ever increasing need for ensuring confidentiality, authentication, integrity and privacy of data. CBIR on outsourced encrypted images can be done by extracting features from unencrypted images and generating searchable encrypted index based on it. Visual descriptors like color descriptors, shape and texture descriptors, etc. are employed for similarity search. Since visual descriptors used to represent an image have crucial role in retrieving most similar results, an attempt to combine them has been made in this paper. The effect of combining different visual descriptors on retrieval precision in secure CBIR scheme proposed by Xia et al. is analyzed. Experimental results show that combining visual descriptors can significantly enhance retrieval precision of the secure CBIR scheme.
2020-05-11
OUIAZZANE, Said, ADDOU, Malika, BARRAMOU, Fatimazahra.  2019.  A Multi-Agent Model for Network Intrusion Detection. 2019 1st International Conference on Smart Systems and Data Science (ICSSD). :1–5.
The objective of this paper is to propose a distributed intrusion detection model based on a multi agent system. Mutli Agent Systems (MAS) are very suitable for intrusion detection systems as they meet the characteristics required by the networks and Big Data issues. The MAS agents cooperate and communicate with each other to ensure the effective detection of network intrusions without the intervention of an expert as used to be in the classical intrusion detection systems relying on signature matching to detect known attacks. The proposed model helped to detect known and unknown attacks within big computer infrastructure by responding to the network requirements in terms of distribution, autonomy, responsiveness and communication. The proposed model is capable of achieving a good and a real time intrusion detection using multi-agents paradigm and Hadoop Distributed File System (HDFS).
2020-03-02
Ibrokhimov, Sanjar, Hui, Kueh Lee, Abdulhakim Al-Absi, Ahmed, lee, hoon jae, Sain, Mangal.  2019.  Multi-Factor Authentication in Cyber Physical System: A State of Art Survey. 2019 21st International Conference on Advanced Communication Technology (ICACT). :279–284.
Digital Multifactor authentication is one of the best ways to make secure authentication. It covers many different areas of a Cyber-connected world, including online payments, communications, access right management, etc. Most of the time, Multifactor authentication is little complex as it require extra step from users. With two-factor authentication, along with the user-ID and password, user also needs to enter a special code which they normally receive by short message service or some special code which they got in advance. This paper will discuss the evolution from single authentication to Multi-Factor Authentication (MFA) starting from Single-Factor Authentication (SFA) and through Two-Factor Authentication (2FA). In addition, this paper presents five high-level categories of features of user authentication in the gadget-free world including security, privacy, and usability aspects. These are adapted and extended from earlier research on web authentication methods. In conclusion, this paper gives future research directions and open problems that stem from our observations.
2020-06-01
Parikh, Sarang, Sanjay, H A, Shastry, K. Aditya, Amith, K K.  2019.  Multimodal Data Security Framework Using Steganography Approaches. 2019 International Conference on Communication and Electronics Systems (ICCES). :1997–2002.
Information or data is a very crucial resource. Hence securing the information becomes a critical task. Transfer and Communication mediums via which we send this information do not provide data security natively. Therefore, methods for data security have to be devised to protect the information from third party and unauthorized users. Information hiding strategies like steganography provide techniques for data encryption so that the unauthorized users cannot read it. This work is aimed at creating a novel method of Augmented Reality Steganography (ARSteg). ARSteg uses cloud for image and key storage that does not alter any attributes of an image such as size and colour scheme. Unlike, traditional algorithms such as Least Significant Bit (LSB) which changes the attributes of images, our approach uses well established encryption algorithm such as Advanced Encryption Standard (AES) for encryption and decryption. This system is further secured by many alternative means such as honey potting, tracking and heuristic intrusion detection that ensure that the transmitted messages are completely secure and no intrusions are allowed. The intrusions are prevented by detecting them immediately and neutralizing them.
2020-01-27
Altamimi, Abdulaziz, Clarke, Nathan, Furnell, Steven, Li, Fudong.  2019.  Multi-Platform Authorship Verification. Proceedings of the Third Central European Cybersecurity Conference. :1–7.
At the present time, there has been a rapid increase in the variety and popularity of messaging systems such as social network messaging, text messages, email and Twitter, with users frequently exchanging messages across various platforms. Unfortunately, in amongst the legitimate messages, there is a host of illegitimate and inappropriate content - with cyber stalking, trolling and computerassisted crime all taking place. Therefore, there is a need to identify individuals using messaging systems. Stylometry is the study of linguistic features in a text which consists of verifying an author based on his writing style that consists of checking whether a target text was written or not by a specific individual author. Whilst much research has taken place within authorship verification, studies have focused upon singular platforms, often had limited datasets and restricted methodologies that have meant it is difficult to appreciate the real-world value of the approach. This paper seeks to overcome these limitations through providing an analysis of authorship verification across four common messaging systems. This approach enables a direct comparison of recognition performance and provides a basis for analyzing the feature vectors across platforms to better understand what aspects each capitalize upon in order to achieve good classification. The experiments also include an investigation into the feature vector creation, utilizing population and user-based techniques to compare and contrast performance. The experiment involved 50 participants across four common platforms with a total 13,617; 106,359; 4,539; and 6,540 samples for Twitter, SMS, Facebook, and Email achieving an Equal Error Rate (EER) of 20.16%, 7.97%, 25% and 13.11% respectively.
2020-05-18
Nambiar, Sindhya K, Leons, Antony, Jose, Soniya, Arunsree.  2019.  Natural Language Processing Based Part of Speech Tagger using Hidden Markov Model. 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :782–785.
In various natural language processing applications, PART-OF-SPEECH (POS) tagging is performed as a preprocessing step. For making POS tagging accurate, various techniques have been explored. But in Indian languages, not much work has been done. This paper describes the methods to build a Part of speech tagger by using hidden markov model. Supervised learning approach is implemented in which, already tagged sentences in malayalam is used to build hidden markov model.
2020-07-13
Abuella, Hisham, Ekin, Sabit.  2019.  A New Paradigm for Non-contact Vitals Monitoring using Visible Light Sensing. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–2.
Typical techniques for tracking vital signs require body contact and most of these techniques are intrusive in nature. Body-contact methods might irritate the patient's skin and he/she might feel uncomfortable while sensors are touching his/her body. In this study, we present a new wireless (non-contact) method for monitoring human vital signs (breathing and heartbeat). We have demonstrated for the first time1 that vitals signs can be measured wirelessly through visible light signal reflected from a human subject, also referred to as visible light sensing (VLS). In this method, the breathing and heartbeat rates are measured without any body-contact device, using only a simple photodetector and a light source (e.g., LED). The light signal reflected from human subject is modulated by the physical motions during breathing and heartbeats. Signal processing tools such as filtering and Fourier transform are used to convert these small variations in the received light signal power to vitals data.We implemented the VLS-based non-contact vital signs monitoring system by using an off-the-shelf light source, a photodetector and a signal acquisition and processing unit. We observed more than 94% of accuracy as compared to a contact-based FDA (The Food and Drug Administration) approved devices. Additional evaluations are planned to assess the performance of the developed vitals monitoring system, e.g., different subjects, environments, etc. Non-contact vitals monitoring system can be used in various areas and scenarios such as medical facilities, residential homes, security and human-computer-interaction (HCI) applications.
2020-03-18
jaidane, Emna, Hamdi, Mohamed, Aguili, Taoufik, Kim, Tai-hoon.  2019.  A new vehicular blackbox architecture based on searchable encryption. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1073–1078.
Blackboxes are being increasingly used in the vehicular context to store and transmit information related to safety, security and many other applications. The plethora of sensors available at the different parts of the vehicle can provide enriched gathering of the data related to these applications. Nonetheless, to support multiple use cases, the blackbox must be accessible by various actors (e.g. vehicle owner, insurance company, law enforcement authorities). This raises significant challenges regarding the privacy of the data collected and stored in the blackbox. In fact, these data can often lead to tracing back accurate facts about the behaviour of the owner of the vehicle. To cope with this problem, we propose a new blackbox architecture supporting searchable encryption. This feature allows multiple users who are not able to decipher the content of the blackbox to validate properties such as path traceback and velocity. To illustrate the implementation of the proposed technique in practice, we discuss a case study related to post-accident processing by insurance companies.
2020-01-21
Benmoussa, Ahmed, Tahari, Abdou el Karim, Lagaa, Nasreddine, Lakas, Abderrahmane, Ahmad, Farhan, Hussain, Rasheed, Kerrache, Chaker Abdelaziz, Kurugollu, Fatih.  2019.  A Novel Congestion-Aware Interest Flooding Attacks Detection Mechanism in Named Data Networking. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1–6.
Named Data Networking (NDN) is a promising candidate for future internet architecture. It is one of the implementations of the Information-Centric Networking (ICN) architectures where the focus is on the data rather than the owner of the data. While the data security is assured by definition, these networks are susceptible of various Denial of Service (DoS) attacks, mainly Interest Flooding Attacks (IFA). IFAs overwhelm an NDN router with a huge amount of interests (Data requests). Various solutions have been proposed in the literature to mitigate IFAs; however; these solutions do not make a difference between intentional and unintentional misbehavior due to the network congestion. In this paper, we propose a novel congestion-aware IFA detection and mitigation solution. We performed extensive simulations and the results clearly depict the efficiency of our proposal in detecting truly occurring IFA attacks.
2020-03-23
Essam, Gehad, Shehata, Heba, Khattab, Tamer, Abualsaud, Khalid, Guizani, Mohsen.  2019.  Novel Hybrid Physical Layer Security Technique in RFID Systems. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1299–1304.
In this paper, we propose a novel PHY layer security technique in radio frequency identification (RFID) backscatter communications system. In order to protect the RFID tag information confidentiality from the eavesdroppers attacks, the proposed technique deploys beam steering (BS) using a one dimensional (1-D) antenna array in the tag side in addition to noise injection from the reader side. The performance analysis and simulation results show that the new technique outperforms the already-existing noise injection security technique and overcomes its design limitations.
2019-09-09
Almohaimeed, A., Asaduzzaman, A..  2019.  A Novel Moving Target Defense Technique to Secure Communication Links in Software-Defined Networks. 2019 Fifth Conference on Mobile and Secure Services (MobiSecServ). :1–4.
Software-defined networking (SDN) is a recently developed approach to computer networking that brings a centralized orientation to network control, thereby improving network architecture and management. However, as with any communication environment that involves message transmission among users, SDN is confronted by the ongoing challenge of protecting user privacy. In this “Work in Progress (WIP)” research, we propose an SDN security model that applies the moving target defense (MTD) technique to protect communication links from sensitive data leakages. MTD is a security solution aimed at increasing complexity and uncertainty for attackers by concealing sensitive information that may serve as a gateway from which to launch different types of attacks. The proposed MTD-based security model is intended to protect user identities contained in transmitted messages in a way that prevents network intruders from identifying the real identities of senders and receivers. According to the results from preliminary experiments, the proposed MTD model has potential to protect the identities contained in transmitted messages within communication links. This work will be extended to protect sensitive data if an attacker gets access to the network device.
2020-08-13
Shao, Sicong, Tunc, Cihan, Al-Shawi, Amany, Hariri, Salim.  2019.  One-Class Classification with Deep Autoencoder Neural Networks for Author Verification in Internet Relay Chat. 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA). :1—8.
Social networks are highly preferred to express opinions, share information, and communicate with others on arbitrary topics. However, the downside is that many cybercriminals are leveraging social networks for cyber-crime. Internet Relay Chat (IRC) is the important social networks which can grant the anonymity to users by allowing them to connect channels without sign-up process. Therefore, IRC has been the playground of hackers and anonymous users for various operations such as hacking, cracking, and carding. Hence, it is urgent to study effective methods which can identify the authors behind the IRC messages. In this paper, we design an autonomic IRC monitoring system, performing recursive deep learning for classifying threat levels of messages and develop a novel author verification approach with one-class classification with deep autoencoder neural networks. The experimental results show that our approach can successfully perform effective author verification for IRC users.