Biblio

Found 3403 results

Filters: First Letter Of Last Name is A  [Clear All Filters]
2020-11-04
Ajjimaporn, P., Gibbons, M., Stoick, B., Straub, J..  2019.  Automated Student Assessment for Cybersecurity Courses. 2019 14th Annual Conference System of Systems Engineering (SoSE). :93—95.

The need for cybersecurity knowledge and skills is constantly growing as our lives become more integrated with the digital world. In order to meet this demand, educational institutions must continue to innovate within the field of cybersecurity education and make this educational process as effective and efficient as possible. We seek to accomplish this goal by taking an existing cybersecurity educational technology and adding automated grading and assessment functionality to it. This will reduce costs and maximize scalability by reducing or even eliminating the need for human graders.

2020-08-28
Al-Odat, Zeyad A., Al-Qtiemat, Eman M., Khan, Samee U..  2019.  A Big Data Storage Scheme Based on Distributed Storage Locations and Multiple Authorizations. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :13—18.

This paper introduces a secured and distributed Big Data storage scheme with multiple authorizations. It divides the Big Data into small chunks and distributes them through multiple Cloud locations. The Shamir's Secret Sharing and Secure Hash Algorithm are employed to provide the security and authenticity of this work. The proposed methodology consists of two phases: the distribution and retrieving phases. The distribution phase comprises three operations of dividing, encrypting, and distribution. The retrieving phase performs collecting and verifying operations. To increase the security level, the encryption key is divided into secret shares using Shamir's Algorithm. Moreover, the Secure Hash Algorithm is used to verify the Big Data after retrieving from the Cloud. The experimental results show that the proposed design can reconstruct a distributed Big Data with good speed while conserving the security and authenticity properties.

2020-07-10
Tahir, Rashid, Durrani, Sultan, Ahmed, Faizan, Saeed, Hammas, Zaffar, Fareed, Ilyas, Saqib.  2019.  The Browsers Strike Back: Countering Cryptojacking and Parasitic Miners on the Web. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. :703—711.

With the recent boom in the cryptocurrency market, hackers have been on the lookout to find novel ways of commandeering users' machine for covert and stealthy mining operations. In an attempt to expose such under-the-hood practices, this paper explores the issue of browser cryptojacking, whereby miners are secretly deployed inside browser code without the knowledge of the user. To this end, we analyze the top 50k websites from Alexa and find a noticeable percentage of sites that are indulging in this exploitative exercise often using heavily obfuscated code. Furthermore, mining prevention plug-ins, such as NoMiner, fail to flag such cleverly concealed instances. Hence, we propose a machine learning solution based on hardware-assisted profiling of browser code in real-time. A fine-grained micro-architectural footprint allows us to classify mining applications with \textbackslashtextgreater99% accuracy and even flags them if the mining code has been heavily obfuscated or encrypted. We build our own browser extension and show that it outperforms other plug-ins. The proposed design has negligible overhead on the user's machine and works for all standard off-the-shelf CPUs.

2020-07-09
Kassem, Ali, Ács, Gergely, Castelluccia, Claude, Palamidessi, Catuscia.  2019.  Differential Inference Testing: A Practical Approach to Evaluate Sanitizations of Datasets. 2019 IEEE Security and Privacy Workshops (SPW). :72—79.

In order to protect individuals' privacy, data have to be "well-sanitized" before sharing them, i.e. one has to remove any personal information before sharing data. However, it is not always clear when data shall be deemed well-sanitized. In this paper, we argue that the evaluation of sanitized data should be based on whether the data allows the inference of sensitive information that is specific to an individual, instead of being centered around the concept of re-identification. We propose a framework to evaluate the effectiveness of different sanitization techniques on a given dataset by measuring how much an individual's record from the sanitized dataset influences the inference of his/her own sensitive attribute. Our intent is not to accurately predict any sensitive attribute but rather to measure the impact of a single record on the inference of sensitive information. We demonstrate our approach by sanitizing two real datasets in different privacy models and evaluate/compare each sanitized dataset in our framework.

2020-04-03
Pothong, Kruakae, Pschetz, Larissa, Watson, Jeremy, Gbadamosi, James, Asaturyan, Andre.  2019.  Making IoT security policies relevant, inclusive and practical for people: A multi-dimensional method. Living in the Internet of Things (IoT 2019). :1—11.

Growing amounts of research on IoT and its implications for security, privacy, economy and society has been carried out to inform policies and design. However, ordinary people who are citizens and users of these emerging technologies have rarely been involved in the processes that inform these policies, governance mechanisms and design due to the institutionalised processes that prioritise objective knowledge over subjective ones. People's subjective experiences are often discarded. This priority is likely to further widen the gap between people, technology policies and design as technologies advance towards delegated human agencies, which decreases human interfaces in technology-mediated relationships with objects, systems, services, trade and other (often) unknown third-party beneficiaries. Such a disconnection can have serious implications for policy implementation, especially when it involves human limitations. To address this disconnection, we argue that a space for people to meaningfully contribute their subjective knowledge — experience- to complex technology policies that, in turn, shape their experience and well-being needs to be constructed. To this end, our paper contributes the design and pilot implementation of a method to reconnect and involve people in IoT security policymaking and development.

2019-12-30
Tabakhpour, Adel, Abdelaziz, Morad M. A..  2019.  Neural Network Model for False Data Detection in Power System State Estimation. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). :1-5.

False data injection is an on-going concern facing power system state estimation. In this work, a neural network is trained to detect the existence of false data in measurements. The proposed approach can make use of historical data, if available, by using them in the training sets of the proposed neural network model. However, the inputs of perceptron model in this work are the residual elements from the state estimation, which are highly correlated. Therefore, their dimension could be reduced by preserving the most informative features from the inputs. To this end, principal component analysis is used (i.e., a data preprocessing technique). This technique is especially efficient for highly correlated data sets, which is the case in power system measurements. The results of different perceptron models that are proposed for detection, are compared to a simple perceptron that produces identical result to the outlier detection scheme. For generating the training sets, state estimation was run for different false data on different measurements in 13-bus IEEE test system, and the residuals are saved as inputs of training sets. The testing results of the trained network show its good performance in detection of false data in measurements.

2020-07-10
Mi, Xianghang, Feng, Xuan, Liao, Xiaojing, Liu, Baojun, Wang, XiaoFeng, Qian, Feng, Li, Zhou, Alrwais, Sumayah, Sun, Limin, Liu, Ying.  2019.  Resident Evil: Understanding Residential IP Proxy as a Dark Service. 2019 IEEE Symposium on Security and Privacy (SP). :1185—1201.

An emerging Internet business is residential proxy (RESIP) as a service, in which a provider utilizes the hosts within residential networks (in contrast to those running in a datacenter) to relay their customers' traffic, in an attempt to avoid server- side blocking and detection. With the prominent roles the services could play in the underground business world, little has been done to understand whether they are indeed involved in Cybercrimes and how they operate, due to the challenges in identifying their RESIPs, not to mention any in-depth analysis on them. In this paper, we report the first study on RESIPs, which sheds light on the behaviors and the ecosystem of these elusive gray services. Our research employed an infiltration framework, including our clients for RESIP services and the servers they visited, to detect 6 million RESIP IPs across 230+ countries and 52K+ ISPs. The observed addresses were analyzed and the hosts behind them were further fingerprinted using a new profiling system. Our effort led to several surprising findings about the RESIP services unknown before. Surprisingly, despite the providers' claim that the proxy hosts are willingly joined, many proxies run on likely compromised hosts including IoT devices. Through cross-matching the hosts we discovered and labeled PUP (potentially unwanted programs) logs provided by a leading IT company, we uncovered various illicit operations RESIP hosts performed, including illegal promotion, Fast fluxing, phishing, malware hosting, and others. We also reverse engi- neered RESIP services' internal infrastructures, uncovered their potential rebranding and reselling behaviors. Our research takes the first step toward understanding this new Internet service, contributing to the effective control of their security risks.

2020-02-26
Saad, Muhammad, Anwar, Afsah, Ahmad, Ashar, Alasmary, Hisham, Yuksel, Murat, Mohaisen, Aziz.  2019.  RouteChain: Towards Blockchain-Based Secure and Efficient BGP Routing. 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :210–218.

Routing on the Internet is defined among autonomous systems (ASes) based on a weak trust model where it is assumed that ASes are honest. While this trust model strengthens the connectivity among ASes, it results in an attack surface which is exploited by malicious entities to hijacking routing paths. One such attack is known as the BGP prefix hijacking, in which a malicious AS broadcasts IP prefixes that belong to a target AS, thereby hijacking its traffic. In this paper, we proposeRouteChain: a blockchain-based secure BGP routing system that counters BGP hijacking and maintains a consistent view of the Internet routing paths. Towards that, we leverage provenance assurance and tamper-proof properties of blockchains to augment trust among ASes. We group ASes based on their geographical (network) proximity and construct a bihierarchical blockchain model that detects false prefixes prior to their spread over the Internet. We validate strengths of our design by simulations and show its effectiveness by drawing a case study with the Youtube hijacking of 2008. Our proposed scheme is a standalone service that can be incrementally deployed without the need of a central authority.

2020-03-27
Coblenz, Michael, Sunshine, Joshua, Aldrich, Jonathan, Myers, Brad A..  2019.  Smarter Smart Contract Development Tools. 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). :48–51.

Much recent work focuses on finding bugs and security vulnerabilities in smart contracts written in existing languages. Although this approach may be helpful, it does not address flaws in the underlying programming language, which can facilitate writing buggy code in the first place. We advocate a re-thinking of the blockchain software engineering tool set, starting with the programming language in which smart contracts are written. In this paper, we propose and justify requirements for a new generation of blockchain software development tools. New tools should (1) consider users' needs as a primary concern; (2) seek to facilitate safe development by detecting relevant classes of serious bugs at compile time; (3) as much as possible, be blockchain-agnostic, given the wide variety of different blockchain platforms available, and leverage the properties that are common among blockchain environments to improve safety and developer effectiveness.

2020-02-10
Visalli, Nicholas, Deng, Lin, Al-Suwaida, Amro, Brown, Zachary, Joshi, Manish, Wei, Bingyang.  2019.  Towards Automated Security Vulnerability and Software Defect Localization. 2019 IEEE 17th International Conference on Software Engineering Research, Management and Applications (SERA). :90–93.

Security vulnerabilities and software defects are prevalent in software systems, threatening every aspect of cyberspace. The complexity of modern software makes it hard to secure systems. Security vulnerabilities and software defects become a major target of cyberattacks which can lead to significant consequences. Manual identification of vulnerabilities and defects in software systems is very time-consuming and tedious. Many tools have been designed to help analyze software systems and to discover vulnerabilities and defects. However, these tools tend to miss various types of bugs. The bugs that are not caught by these tools usually include vulnerabilities and defects that are too complicated to find or do not fall inside of an existing rule-set for identification. It was hypothesized that these undiscovered vulnerabilities and defects do not occur randomly, rather, they share certain common characteristics. A methodology was proposed to detect the probability of a bug existing in a code structure. We used a comprehensive experimental evaluation to assess the methodology and report our findings.

2020-08-24
Noor, Joseph, Ali-Eldin, Ahmed, Garcia, Luis, Rao, Chirag, Dasari, Venkat R., Ganesan, Deepak, Jalaian, Brian, Shenoy, Prashant, Srivastava, Mani.  2019.  The Case for Robust Adaptation: Autonomic Resource Management is a Vulnerability. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :821–826.
Autonomic resource management for distributed edge computing systems provides an effective means of enabling dynamic placement and adaptation in the face of network changes, load dynamics, and failures. However, adaptation in-and-of-itself offers a side channel by which malicious entities can extract valuable information. An attacker can take advantage of autonomic resource management techniques to fool a system into misallocating resources and crippling applications. Using a few scenarios, we outline how attacks can be launched using partial knowledge of the resource management substrate - with as little as a single compromised node. We argue that any system that provides adaptation must consider resource management as an attack surface. As such, we propose ADAPT2, a framework that incorporates concepts taken from Moving-Target Defense and state estimation techniques to ensure correctness and obfuscate resource management, thereby protecting valuable system and application information from leaking.
2021-01-15
Akhtar, Z., Dasgupta, D..  2019.  A Comparative Evaluation of Local Feature Descriptors for DeepFakes Detection. 2019 IEEE International Symposium on Technologies for Homeland Security (HST). :1—5.
The global proliferation of affordable photographing devices and readily-available face image and video editing software has caused a remarkable rise in face manipulations, e.g., altering face skin color using FaceApp. Such synthetic manipulations are becoming a very perilous problem, as altered faces not only can fool human experts but also have detrimental consequences on automated face identification systems (AFIS). Thus, it is vital to formulate techniques to improve the robustness of AFIS against digital face manipulations. The most prominent countermeasure is face manipulation detection, which aims at discriminating genuine samples from manipulated ones. Over the years, analysis of microtextural features using local image descriptors has been successfully used in various applications owing to their flexibility, computational simplicity, and performances. Therefore, in this paper, we study the possibility of identifying manipulated faces via local feature descriptors. The comparative experimental investigation of ten local feature descriptors on a new and publicly available DeepfakeTIMIT database is reported.
2020-12-07
Silva, J. L. da, Assis, M. M., Braga, A., Moraes, R..  2019.  Deploying Privacy as a Service within a Cloud-Based Framework. 2019 9th Latin-American Symposium on Dependable Computing (LADC). :1–4.
Continuous monitoring and risk assessment of privacy violations on cloud systems are needed by anyone who has business needs subject to privacy regulations. Compliance to such regulations in dynamic systems demands appropriate techniques, tools and instruments. As a Service concepts can be a good option to support this task. Previous work presented PRIVAaaS, a software toolkit that allows controlling and reducing data leakages, thus preserving privacy, by providing anonymization capabilities to query-based systems. This short paper discusses the implementation details and deployment environment of an evolution of PRIVAaaS as a MAPE-K control loop within the ATMOSPHERE Platform. ATMOSPHERE is both a framework and a platform enabling the implementation of trustworthy cloud services. By enabling PRIVAaaS within ATMOSPHERE, privacy is made one of several trustworthiness properties continuously monitored and assessed by the platform with a software-based, feedback control loop known as MAPE-K.
2020-09-11
Ashiq, Md. Ishtiaq, Bhowmick, Protick, Hossain, Md. Shohrab, Narman, Husnu S..  2019.  Domain Flux-based DGA Botnet Detection Using Feedforward Neural Network. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1—6.
Botnets have been a major area of concern in the field of cybersecurity. There have been a lot of research works for detection of botnets. However, everyday cybercriminals are coming up with new ideas to counter the well-known detection methods. One such popular method is domain flux-based botnets in which a large number of domain names are produced using domain generation algorithm. In this paper, we have proposed a robust way of detecting DGA-based botnets using few novel features covering both syntactic and semantic viewpoints. We have used Area under ROC curve as our performance metric since it provides comprehensive information about the performance of binary classifiers at various thresholds. Results show that our approach performs significantly better than the baseline approach. Our proposed method can help in detecting established DGA bots (equipped with extensive features) as well as prospective advanced DGA bots imitating real-world domain names.
2021-01-15
Kharbat, F. F., Elamsy, T., Mahmoud, A., Abdullah, R..  2019.  Image Feature Detectors for Deepfake Video Detection. 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA). :1—4.
Detecting DeepFake videos are one of the challenges in digital media forensics. This paper proposes a method to detect deepfake videos using Support Vector Machine (SVM) regression. The SVM classifier can be trained with feature points extracted using one of the different feature-point detectors such as HOG, ORB, BRISK, KAZE, SURF, and FAST algorithms. A comprehensive test of the proposed method is conducted using a dataset of original and fake videos from the literature. Different feature point detectors are tested. The result shows that the proposed method of using feature-detector-descriptors for training the SVM can be effectively used to detect false videos.
2020-05-04
Zalozhnev, Alexey Yu., Andros, Denis A., Ginz, Vasiliy N., Loktionov, Anatoly Eu..  2019.  Information Systems and Network Technologies for Personal Data Cyber Security in Public Health. 2019 International Multidisciplinary Information Technology and Engineering Conference (IMITEC). :1–5.
The article focuses on Personal Data Cyber Security Systems. These systems are the critical components for Health Information Management Systems of Public Health enterprises. The purpose of this article is to inform and provide the reader with Personal Data Cyber Security Legislation and Regulation in Public Health Sector and enlighten him with the Information Systems that were designed and implemented for Personal Data Cyber Security in Public Health.
2020-07-06
Ben, Yongming, Han, Yanni, Cai, Ning, An, Wei, Xu, Zhen.  2019.  An Online System Dependency Graph Anomaly Detection based on Extended Weisfeiler-Lehman Kernel. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
Modern operating systems are typical multitasking systems: Running multiple tasks at the same time. Therefore, a large number of system calls belonging to different processes are invoked at the same time. By associating these invocations, one can construct the system dependency graph. In rapidly evolving system dependency graphs, how to quickly find outliers is an urgent issue for intrusion detection. Clustering analysis based on graph similarity will help solve this problem. In this paper, an extended Weisfeiler-Lehman(WL) kernel is proposed. Firstly, an embedded vector with indefinite dimensions is constructed based on the original dependency graph. Then, the vector is compressed with Simhash to generate a fingerprint. Finally, anomaly detection based on clustering is carried out according to these fingerprints. Our scheme can achieve prominent detection with high efficiency. For validation, we choose StreamSpot, a relevant prior work, to act as benchmark, and use the same data set as it to carry out evaluations. Experiments show that our scheme can achieve the highest detection precision of 98% while maintaining a perfect recall performance. Moreover, both quantitative and visual comparisons demonstrate the outperforming clustering effect of our scheme than StreamSpot.
2020-03-30
Souza, Renan, Azevedo, Leonardo, Lourenço, Vítor, Soares, Elton, Thiago, Raphael, Brandão, Rafael, Civitarese, Daniel, Brazil, Emilio, Moreno, Marcio, Valduriez, Patrick et al..  2019.  Provenance Data in the Machine Learning Lifecycle in Computational Science and Engineering. 2019 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS). :1–10.
Machine Learning (ML) has become essential in several industries. In Computational Science and Engineering (CSE), the complexity of the ML lifecycle comes from the large variety of data, scientists' expertise, tools, and workflows. If data are not tracked properly during the lifecycle, it becomes unfeasible to recreate a ML model from scratch or to explain to stackholders how it was created. The main limitation of provenance tracking solutions is that they cannot cope with provenance capture and integration of domain and ML data processed in the multiple workflows in the lifecycle, while keeping the provenance capture overhead low. To handle this problem, in this paper we contribute with a detailed characterization of provenance data in the ML lifecycle in CSE; a new provenance data representation, called PROV-ML, built on top of W3C PROV and ML Schema; and extensions to a system that tracks provenance from multiple workflows to address the characteristics of ML and CSE, and to allow for provenance queries with a standard vocabulary. We show a practical use in a real case in the O&G industry, along with its evaluation using 239,616 CUDA cores in parallel.
2020-08-10
Quijano, Andrew, Akkaya, Kemal.  2019.  Server-Side Fingerprint-Based Indoor Localization Using Encrypted Sorting. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :53–57.
GPS signals, the main origin of navigation, are not functional in indoor environments. Therefore, Wi-Fi access points have started to be increasingly used for localization and tracking inside the buildings by relying on fingerprint-based approach. However, with these types of approaches, several concerns regarding the privacy of the users have arisen. Malicious individuals can determine a clients daily habits and activities by simply analyzing their wireless signals. While there are already efforts to incorporate privacy to the existing fingerprint-based approaches, they are limited to the characteristics of the homo-morphic cryptographic schemes they employed. In this paper, we propose to enhance the performance of these approaches by exploiting another homomorphic algorithm, namely DGK, with its unique encrypted sorting capability and thus pushing most of the computations to the server side. We developed an Android app and tested our system within a Columbia University dormitory. Compared to existing systems, the results indicated that more power savings can be achieved at the client side and DGK can be a viable option with more powerful server computation capabilities.
2020-06-03
Qawasmeh, Ethar, Al-Saleh, Mohammed I., Al-Sharif, Ziad A..  2019.  Towards a Generic Approach for Memory Forensics. 2019 Sixth HCT Information Technology Trends (ITT). :094—098.

The era of information technology has, unfortunately, contributed to the tremendous rise in the number of criminal activities. However, digital artifacts can be utilized in convicting cybercriminal and exposing their activities. The digital forensics science concerns about all aspects related to cybercrimes. It seeks digital evidence by following standard methodologies to be admitted in court rooms. This paper concerns about memory forensics for the unique artifacts it holds. Memory contains information about the current state of systems and applications. Moreover, an application's data explains how a criminal has been interacting the application just before the memory is acquired. Memory forensics at the application level is currently random and cumbersome. Targeting specific applications is what forensic researchers and practitioner are currently striving to provide. This paper suggests a general solution to investigate any application. Our solution aims to utilize an application's data structures and variables' information in the investigation process. This is because an application's data has to be stored and retrieved in the means of variables. Data structures and variables' information can be generated by compilers for debugging purposes. We show that an application's information is a valuable resource to the investigator.

2020-11-17
Agadakos, I., Ciocarlie, G. F., Copos, B., Emmi, M., George, J., Leslie, N., Michaelis, J..  2019.  Application of Trust Assessment Techniques to IoBT Systems. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :833—840.

Continued advances in IoT technology have prompted new investigation into its usage for military operations, both to augment and complement existing military sensing assets and support next-generation artificial intelligence and machine learning systems. Under the emerging Internet of Battlefield Things (IoBT) paradigm, current operational conditions necessitate the development of novel security techniques, centered on establishment of trust for individual assets and supporting resilience of broader systems. To advance current IoBT efforts, a collection of prior-developed cybersecurity techniques is reviewed for applicability to conditions presented by IoBT operational environments (e.g., diverse asset ownership, degraded networking infrastructure, adversary activities) through use of supporting case study examples. The research techniques covered focus on two themes: (1) Supporting trust assessment for known/unknown IoT assets; (2) ensuring continued trust of known IoT assets and IoBT systems.

2020-07-09
Ashouri, Mohammadreza.  2019.  Detecting Input Sanitization Errors in Scala. 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW). :313—319.

Scala programming language combines object-oriented and functional programming in one concise, high-level language, and the language supports static types that help to avoid bugs in complex programs. This paper proposes a dynamic taint analyzer called ScalaTaint for Scala applications. The analyzer traces the propagation of malicious inputs from untrusted sources to sensitive sink methods in programs that can be exploited by adversaries. In this work, we evaluated the accuracy of ScalaTaint with a security benchmark suite including 7 projects in Scala. As a result, our analyzer could report 49 vulnerabilities within 753,372 lines of code. Moreover, the result of our performance measurement on ScalaBench shows 67% runtime overhead that demonstrates the usefulness and efficiently of our technique in comparison with similar tools.

2020-11-17
Buenrostro, E. D., Rivera, A. O. G., Tosh, D., Acosta, J. C., Njilla, L..  2019.  Evaluating Usability of Permissioned Blockchain for Internet-of-Battlefield Things Security. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :841—846.

Military technology is ever-evolving to increase the safety and security of soldiers on the field while integrating Internet-of-Things solutions to improve operational efficiency in mission oriented tasks in the battlefield. Centralized communication technology is the traditional network model used for battlefields and is vulnerable to denial of service attacks, therefore suffers performance hazards. They also lead to a central point of failure, due to which, a flexible model that is mobile, resilient, and effective for different scenarios must be proposed. Blockchain offers a distributed platform that allows multiple nodes to update a distributed ledger in a tamper-resistant manner. The decentralized nature of this system suggests that it can be an effective tool for battlefields in securing data communication among Internet-of-Battlefield Things (IoBT). In this paper, we integrate a permissioned blockchain, namely Hyperledger Sawtooth, in IoBT context and evaluate its performance with the goal of determining whether it has the potential to serve the performance needs of IoBT environment. Using different testing parameters, the metric data would help in suggesting the best parameter set, network configuration and blockchain usability views in IoBT context. We show that a blockchain-integrated IoBT platform has heavy dependency on the characteristics of the underlying network such as topology, link bandwidth, jitter, and other communication configurations, that can be tuned up to achieve optimal performance.

2020-04-17
Efendy, Rezky Aulia, Almaarif, Ahmad, Budiono, Avon, Saputra, Muhardi, Puspitasari, Warih, Sutoyo, Edi.  2019.  Exploring the Possibility of USB based Fork Bomb Attack on Windows Environment. 2019 International Conference on ICT for Smart Society (ICISS). 7:1—4.

The need for data exchange and storage is currently increasing. The increased need for data exchange and storage also increases the need for data exchange devices and media. One of the most commonly used media exchanges and data storage is the USB Flash Drive. USB Flash Drive are widely used because they are easy to carry and have a fairly large storage. Unfortunately, this increased need is not directly proportional to an increase in awareness of device security, both for USB flash drive devices and computer devices that are used as primary storage devices. This research shows the threats that can arise from the use of USB Flash Drive devices. The threat that is used in this research is the fork bomb implemented on an Arduino Pro Micro device that is converted to a USB Flash drive. The purpose of the Fork Bomb is to damage the memory performance of the affected devices. As a result, memory performance to execute the process will slow down. The use of a USB Flash drive as an attack vector with the fork bomb method causes users to not be able to access the operating system that was attacked. The results obtained indicate that the USB Flash Drive can be used as a medium of Fork Bomb attack on the Windows operating system.

2020-06-19
Saboor khan, Abdul, Shafi, Imran, Anas, Muhammad, Yousuf, Bilal M, Abbas, Muhammad Jamshed, Noor, Aqib.  2019.  Facial Expression Recognition using Discrete Cosine Transform Artificial Neural Network. 2019 22nd International Multitopic Conference (INMIC). :1—5.

Every so often Humans utilize non-verbal gestures (e.g. facial expressions) to express certain information or emotions. Moreover, countless face gestures are expressed throughout the day because of the capabilities possessed by humans. However, the channels of these expression/emotions can be through activities, postures, behaviors & facial expressions. Extensive research unveiled that there exists a strong relationship between the channels and emotions which has to be further investigated. An Automatic Facial Expression Recognition (AFER) framework has been proposed in this work that can predict or anticipate seven universal expressions. In order to evaluate the proposed approach, Frontal face Image Database also named as Japanese Female Facial Expression (JAFFE) is opted as input. This database is further processed with a frequency domain technique known as Discrete Cosine transform (DCT) and then classified using Artificial Neural Networks (ANN). So as to check the robustness of this novel strategy, the random trial of K-fold cross validation, leave one out and person independent methods is repeated many times to provide an overview of recognition rates. The experimental results demonstrate a promising performance of this application.