Biblio

Found 3403 results

Filters: First Letter Of Last Name is A  [Clear All Filters]
2020-08-24
Al-Odat, Zeyad A., Khan, Samee U..  2019.  Anonymous Privacy-Preserving Scheme for Big Data Over the Cloud. 2019 IEEE International Conference on Big Data (Big Data). :5711–5717.
This paper introduces an anonymous privacy-preserving scheme for big data over the cloud. The proposed design helps to enhance the encryption/decryption time of big data by utilizing the MapReduce framework. The Hadoop distributed file system and the secure hash algorithm are employed to provide the anonymity, security and efficiency requirements for the proposed scheme. The experimental results show a significant enhancement in the computational time of data encryption and decryption.
2020-09-14
Sivaram, M., Ahamed A, Mohamed Uvaze, Yuvaraj, D., Megala, G., Porkodi, V., Kandasamy, Manivel.  2019.  Biometric Security and Performance Metrics: FAR, FER, CER, FRR. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :770–772.
Biometrics manages the computerized acknowledgment of people dependent on natural and social attributes. The example acknowledgment framework perceives an individual by deciding the credibility of a particular conduct normal for person. The primary rule of biometric framework is recognizable proof and check. A biometric confirmation framework use fingerprints, face, hand geometry, iris, and voice, mark, and keystroke elements of a person to recognize an individual or to check a guaranteed character. Biometrics authentication is a form of identification and access control process which identify individuals in packs that are under reconnaissance. Biometric security system increase in the overall security and individuals no longer have to deal with lost ID Cards or forgotten passwords. It helps much organization to see everyone is at a certain time when something might have happened that needs reviewed. The current issues in biometric system with individuals and many organization facing are personal privacy, expensive, data's may be stolen.
Ortiz Garcés, Ivan, Cazares, Maria Fernada, Andrade, Roberto Omar.  2019.  Detection of Phishing Attacks with Machine Learning Techniques in Cognitive Security Architecture. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :366–370.
The number of phishing attacks has increased in Latin America, exceeding the operational skills of cybersecurity analysts. The cognitive security application proposes the use of bigdata, machine learning, and data analytics to improve response times in attack detection. This paper presents an investigation about the analysis of anomalous behavior related with phishing web attacks and how machine learning techniques can be an option to face the problem. This analysis is made with the use of an contaminated data sets, and python tools for developing machine learning for detect phishing attacks through of the analysis of URLs to determinate if are good or bad URLs in base of specific characteristics of the URLs, with the goal of provide realtime information for take proactive decisions that minimize the impact of an attack.
2020-05-08
Hafeez, Azeem, Topolovec, Kenneth, Awad, Selim.  2019.  ECU Fingerprinting through Parametric Signal Modeling and Artificial Neural Networks for In-vehicle Security against Spoofing Attacks. 2019 15th International Computer Engineering Conference (ICENCO). :29—38.
Fully connected autonomous vehicles are more vulnerable than ever to hacking and data theft. The controller area network (CAN) protocol is used for communication between in-vehicle control networks (IVN). The absence of basic security features of this protocol, like message authentication, makes it quite vulnerable to a wide range of attacks including spoofing attacks. As traditional cybersecurity methods impose limitations in ensuring confidentiality and integrity of transmitted messages via CAN, a new technique has emerged among others to approve its reliability in fully authenticating the CAN messages. At the physical layer of the communication system, the method of fingerprinting the messages is implemented to link the received signal to the transmitting electronic control unit (ECU). This paper introduces a new method to implement the security of modern electric vehicles. The lumped element model is used to characterize the channel-specific step response. ECU and channel imperfections lead to a unique transfer function for each transmitter. Due to the unique transfer function, the step response for each transmitter is unique. In this paper, we use control system parameters as a feature-set, afterward, a neural network is used transmitting node identification for message authentication. A dataset collected from a CAN network with eight-channel lengths and eight ECUs to evaluate the performance of the suggested method. Detection results show that the proposed method achieves an accuracy of 97.4% of transmitter detection.
2020-06-26
Padmashree, M G, Arunalatha, J S, Venugopal, K R.  2019.  HSSM: High Speed Split Multiplier for Elliptic Curve Cryptography in IoT. 2019 Fifteenth International Conference on Information Processing (ICINPRO). :1—5.

Security of data in the Internet of Things (IoT) deals with Encryption to provide a stable secure system. The IoT device possess a constrained Main Memory and Secondary Memory that mandates the use of Elliptic Curve Cryptographic (ECC) scheme. The Scalar Multiplication has a great impact on the ECC implementations in reducing the Computation and Space Complexity, thereby enhancing the performance of an IoT System providing high Security and Privacy. The proposed High Speed Split Multiplier (HSSM) for ECC in IoT is a lightweight Multiplication technique that uses Split Multiplication with Pseudo-Mersenne Prime Number and Montgomery Curve to withstand the Power Analysis Attack. The proposed algorithm reduces the Computation Time and the Space Complexity of the Cryptographic operations in terms of Clock cycles and RAM when compared with Liu et al.,’s multiplication algorithms [1].

2020-03-23
Alzahrani, Abdulrahman, Alshahrani, Hani, Alshehri, Ali, Fu, Huirong.  2019.  An Intelligent Behavior-Based Ransomware Detection System For Android Platform. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :28–35.

Malware variants exhibit polymorphic attacks due to the tremendous growth of the present technologies. For instance, ransomware, an astonishingly growing set of monetary-gain threats in the recent years, is peculiarized as one of the most treacherous cyberthreats against innocent individuals and businesses by locking their devices and/or encrypting their files. Many proposed attempts have been introduced by cybersecurity researchers aiming at mitigating the epidemic of the ransomware attacks. However, this type of malware is kept refined by utilizing new evasion techniques, such as sophisticated codes, dynamic payloads, and anti-emulation techniques, in order to survive against detection systems. This paper introduces RanDetector, a new automated and lightweight system for detecting ransomware applications in Android platform based on their behavior. In particular, this detection system investigates the appearance of some information that is related to ransomware operations in an inspected application before integrating some supervised machine learning models to classify the application. RanDetector is evaluated and tested on a dataset of more 450 applications, including benign and ransomware. Hence, RanDetector has successfully achieved more that 97.62% detection rate with nearly zero false positive.

2020-05-22
Ahsan, Ramoza, Bashir, Muzammil, Neamtu, Rodica, Rundensteiner, Elke A., Sarkozy, Gabor.  2019.  Nearest Neighbor Subsequence Search in Time Series Data. 2019 IEEE International Conference on Big Data (Big Data). :2057—2066.
Continuous growth in sensor data and other temporal sequence data necessitates efficient retrieval and similarity search support on these big time series datasets. However, finding exact similarity results, especially at the granularity of subsequences, is known to be prohibitively costly for large data sets. In this paper, we thus propose an efficient framework for solving this exact subsequence similarity match problem, called TINN (TIme series Nearest Neighbor search). Exploiting the range interval diversity properties of time series datasets, TINN captures similarity at two levels of abstraction, namely, relationships among subsequences within each long time series and relationships across distinct time series in the data set. These relationships are compactly organized in an augmented relationship graph model, with the former relationships encoded in similarity vectors at TINN nodes and the later captured by augmented edge types in the TINN Graph. Query processing strategy deploy novel pruning techniques on the TINN Graph, including node skipping, vertical and horizontal pruning, to significantly reduce the number of time series as well as subsequences to be explored. Comprehensive experiments on synthetic and real world time series data demonstrate that our TINN model consistently outperforms state-of-the-art approaches while still guaranteeing to retrieve exact matches.
2020-09-14
Liang, Xiao, Ma, Lixin, An, Ningyu, Jiang, Dongxiao, Li, Chenggang, Chen, Xiaona, Zhao, Lijiao.  2019.  Ontology Based Security Risk Model for Power Terminal Equipment. 2019 12th International Symposium on Computational Intelligence and Design (ISCID). 2:212–216.
IoT based technology are drastically accelerating the informationization development of the power grid system of China that consists of a huge number of power terminal devices interconnected by the network of electric power IoT. However, the networked power terminal equipment oriented cyberspace security has continually become a challenging problem as network attack is continually varying and evolving. In this paper, we concentrate on the security risk of power terminal equipment and their vulnerability based on ATP attack detection and defense. We first analyze the attack mechanism of APT security attack based on power terminal equipment. Based on the analysis of the security and attack of power IoT terminal device, an ontology-based knowledge representation method of power terminal device and its vulnerability is proposed.
2020-04-17
Bicakci, Kemal, Ak, Ihsan Kagan, Ozdemir, Betul Askin, Gozutok, Mesut.  2019.  Open-TEE is No Longer Virtual: Towards Software-Only Trusted Execution Environments Using White-Box Cryptography. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :177—183.

Trusted Execution Environments (TEEs) provide hardware support to isolate the execution of sensitive operations on mobile phones for improved security. However, they are not always available to use for application developers. To provide a consistent user experience to those who have and do not have a TEE-enabled device, we could get help from Open-TEE, an open-source GlobalPlatform (GP)-compliant software TEE emulator. However, Open-TEE does not offer any of the security properties hardware TEEs have. In this paper, we propose WhiteBox-TEE which integrates white-box cryptography with Open-TEE to provide better security while still remaining complaint with GP TEE specifications. We discuss the architecture, provisioning mechanism, implementation highlights, security properties and performance issues of WhiteBox-TEE and propose possible revisions to TEE specifications to have better use of white-box cryptography in software-only TEEs.

2020-09-11
Ababtain, Eman, Engels, Daniel.  2019.  Security of Gestures Based CAPTCHAs. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :120—126.
We present a security analysis of several gesture CAPTCHA challenges designed to operate on mobiles. Mobile gesture CAPTCHA challenges utilize the accelerometer and the gyroscope inputs from a mobile to allow a human to solve a simple test by physically manipulating the device. We have evaluated the security of gesture CAPTCHA in mobile devices and found them resistant to a range of common automated attacks. Our study has shown that using an accelerometer and the gyroscope readings as an input to solve the CAPTCHA is difficult for malware, but easy for a real user. Gesture CAPTCHA is effective in differentiating between humans and machines.
2020-06-22
Noel, Moses Dogonyaro, Waziri, Onomza Victor, Abdulhamid, Muhammad Shafii, Ojeniyi, Adebayo Joseph.  2019.  Stateful Hash-based Digital Signature Schemes for Bitcoin Cryptocurrency. 2019 15th International Conference on Electronics, Computer and Computation (ICECCO). :1–6.
Modern computing devices use classical algorithms such as Rivest Shamir Adleman (RSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) for their security. The securities of these algorithms relied on the problem and difficulty of integer factorization and also calculating the Discrete Logarithm Problems. With the introduction of quantum computers, recent research is focusing on developing alternative algorithms which are supposed to withstand attacks from quantum computers. One of such alternatives is the Hash-based Digital Signature Schemes. Chosen hash-based signature schemes over classical algorithms is because their security is on the hash function used and that they are metaheuristic in nature. This research work presents basic analysis and the background understanding of Stateful Hash-based Signature Schemes, particularly the Lamport One-Time Signature Scheme, Winternitz One-Time Signature Scheme, and the Merkle Signature Scheme. The three schemes selected are stateful, hence has common features and are few-time hash-based signature schemes. The selected Stateful Hash-based Digital Signature Schemes were analyzed based on their respective key generation, signature generation, signature verification, and their security levels. Practical working examples were given for better understanding. With the analyses, Merkle Signature Scheme proves to be the best candidate to be used in the Bitcoin Proof of Work protocol because of its security and its advantage of signing many messages.
2020-09-04
Khan, Aasher, Rehman, Suriya, Khan, Muhammad U.S, Ali, Mazhar.  2019.  Synonym-based Attack to Confuse Machine Learning Classifiers Using Black-box Setting. 2019 4th International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST). :1—7.
Twitter being the most popular content sharing platform is giving rise to automated accounts called “bots”. Majority of the users on Twitter are bots. Various machine learning (ML) algorithms are designed to detect bots avoiding the vulnerability constraints of ML-based models. This paper contributes to exploit vulnerabilities of machine learning (ML) algorithms through black-box attack. An adversarial text sequence misclassifies the results of deep learning (DL) classifiers for bot detection. Literature shows that ML models are vulnerable to attacks. The aim of this paper is to compromise the accuracy of ML-based bot detection algorithms by replacing original words in tweets with their synonyms. Our results show 7.2% decrease in the accuracy for bot tweets, therefore classifying bot tweets as legitimate tweets.
2020-04-17
Alim, Adil, Zhao, Xujiang, Cho, Jin-Hee, Chen, Feng.  2019.  Uncertainty-Aware Opinion Inference Under Adversarial Attacks. 2019 IEEE International Conference on Big Data (Big Data). :6—15.

Inference of unknown opinions with uncertain, adversarial (e.g., incorrect or conflicting) evidence in large datasets is not a trivial task. Without proper handling, it can easily mislead decision making in data mining tasks. In this work, we propose a highly scalable opinion inference probabilistic model, namely Adversarial Collective Opinion Inference (Adv-COI), which provides a solution to infer unknown opinions with high scalability and robustness under the presence of uncertain, adversarial evidence by enhancing Collective Subjective Logic (CSL) which is developed by combining SL and Probabilistic Soft Logic (PSL). The key idea behind the Adv-COI is to learn a model of robust ways against uncertain, adversarial evidence which is formulated as a min-max problem. We validate the out-performance of the Adv-COI compared to baseline models and its competitive counterparts under possible adversarial attacks on the logic-rule based structured data and white and black box adversarial attacks under both clean and perturbed semi-synthetic and real-world datasets in three real world applications. The results show that the Adv-COI generates the lowest mean absolute error in the expected truth probability while producing the lowest running time among all.

2020-10-06
Akbarzadeh, Aida, Pandey, Pankaj, Katsikas, Sokratis.  2019.  Cyber-Physical Interdependencies in Power Plant Systems: A Review of Cyber Security Risks. 2019 IEEE Conference on Information and Communication Technology. :1—6.

Realizing the importance of the concept of “smart city” and its impact on the quality of life, many infrastructures, such as power plants, began their digital transformation process by leveraging modern computing and advanced communication technologies. Unfortunately, by increasing the number of connections, power plants become more and more vulnerable and also an attractive target for cyber-physical attacks. The analysis of interdependencies among system components reveals interdependent connections, and facilitates the identification of those among them that are in need of special protection. In this paper, we review the recent literature which utilizes graph-based models and network-based models to study these interdependencies. A comprehensive overview, based on the main features of the systems including communication direction, control parameters, research target, scalability, security and safety, is presented. We also assess the computational complexity associated with the approaches presented in the reviewed papers, and we use this metric to assess the scalability of the approaches.

2020-06-19
Eziama, Elvin, Ahmed, Saneeha, Ahmed, Sabbir, Awin, Faroq, Tepe, Kemal.  2019.  Detection of Adversary Nodes in Machine-To-Machine Communication Using Machine Learning Based Trust Model. 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). :1—6.

Security challenges present in Machine-to-Machine Communication (M2M-C) and big data paradigm are fundamentally different from conventional network security challenges. In M2M-C paradigms, “Trust” is a vital constituent of security solutions that address security threats and for such solutions,it is important to quantify and evaluate the amount of trust in the information and its source. In this work, we focus on Machine Learning (ML) Based Trust (MLBT) evaluation model for detecting malicious activities in a vehicular Based M2M-C (VBM2M-C) network. In particular, we present an Entropy Based Feature Engineering (EBFE) coupled Extreme Gradient Boosting (XGBoost) model which is optimized with Binary Particle Swarm optimization technique. Based on three performance metrics, i.e., Accuracy Rate (AR), True Positive Rate (TPR), False Positive Rate (FPR), the effectiveness of the proposed method is evaluated in comparison to the state-of-the-art ensemble models, such as XGBoost and Random Forest. The simulation results demonstrates the superiority of the proposed model with approximately 10% improvement in accuracy, TPR and FPR, with reference to the attacker density of 30% compared with the start-of-the-art algorithms.

2020-11-04
Liu, D. Y. W., Leung, A. C. Y., Au, M. H., Luo, X., Chiu, P. H. P., Im, S. W. T., Lam, W. W. M..  2019.  Virtual Laboratory: Facilitating Teaching and Learning in Cybersecurity for Students with Diverse Disciplines. 2019 IEEE International Conference on Engineering, Technology and Education (TALE). :1—6.

Cybersecurity education is a pressing need, when computer systems and mobile devices are ubiquitous and so are the associated threats. However, in the teaching and learning process of cybersecurity, it is challenging when the students are from diverse disciplines with various academic backgrounds. In this project, a number of virtual laboratories are developed to facilitate the teaching and learning process in a cybersecurity course. The aim of the laboratories is to strengthen students’ understanding of cybersecurity topics, and to provide students hands-on experience of encountering various security threats. The results of this project indicate that virtual laboratories do facilitate the teaching and learning process in cybersecurity for diverse discipline students. Also, we observed that there is an underestimation of the difficulty of studying cybersecurity by the students due to the general image of cybersecurity in public, which had a negative impact on the student’s interest in studying cybersecurity.

2020-03-31
Madiha Tabassum, Tomasz Kosiundefinedski, Alisa Frik, Nathan Malkin, Primal Wijesekera, Serge Egelman, Heather Lipford.  2019.  Investigating Users’ Preferences and Expectations for Always-Listening Voice Assistants. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.. 3(4):23.

Many consumers now rely on different forms of voice assistants, both stand-alone devices and those built into smartphones. Currently, these systems react to specific wake-words, such as "Alexa," "Siri," or "Ok Google." However, with advancements in natural language processing, the next generation of voice assistants could instead always listen to the acoustic environment and proactively provide services and recommendations based on conversations without being explicitly invoked. We refer to such devices as "always listening voice assistants" and explore expectations around their potential use. In this paper, we report on a 178-participant survey investigating the potential services people anticipate from such a device and how they feel about sharing their data for these purposes. Our findings reveal that participants can anticipate a wide range of services pertaining to a conversation; however, most of the services are very similar to those that existing voice assistants currently provide with explicit commands. Participants are more likely to consent to share a conversation when they do not find it sensitive, they are comfortable with the service and find it beneficial, and when they already own a stand-alone voice assistant. Based on our findings we discuss the privacy challenges in designing an always-listening voice assistant.

2020-06-08
Rajeshwaran, Kartik, Anil Kumar, Kakelli.  2019.  Cellular Automata Based Hashing Algorithm (CABHA) for Strong Cryptographic Hash Function. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1–6.
Cryptographic hash functions play a crucial role in information security. Cryptographic hash functions are used in various cryptographic applications to verify the message authenticity and integrity. In this paper we propose a Cellular Automata Based Hashing Algorithm (CABHA) for generating strong cryptographic hash function. The proposed CABHA algorithm uses the cellular automata rules and a custom transformation function to create a strong hash from an input message and a key.
2020-06-29
Daneshgadeh, Salva, Ahmed, Tarem, Kemmerich, Thomas, Baykal, Nazife.  2019.  Detection of DDoS Attacks and Flash Events Using Shannon Entropy, KOAD and Mahalanobis Distance. 2019 22nd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). :222–229.
The growing number of internet based services and applications along with increasing adoption rate of connected wired and wireless devices presents opportunities as well as technical challenges and threads. Distributed Denial of Service (DDoS) attacks have huge devastating effects on internet enabled services. It can be implemented diversely with a variety of tools and codes. Therefore, it is almost impossible to define a single solution to prevent DDoS attacks. The available solutions try to protect internet services from DDoS attacks, but there is no accepted best-practice yet to this security breach. On the other hand, distinguishing DDoS attacks from analogous Flash Events (FEs) wherein huge number of legitimate users try to access a specific internet based services and applications is a tough challenge. Both DDoS attacks and FEs result in unavailability of service, but they should be treated with different countermeasures. Therefore, it is worthwhile to investigate novel methods which can detect well disguising DDoS attacks from similar FE traffic. This paper will contribute to this topic by proposing a hybrid DDoS and FE detection scheme; taking 3 isolated approaches including Kernel Online Anomaly Detection (KOAD), Shannon Entropy and Mahalanobis Distance. In this study, Shannon entropy is utilized with an online machine learning technique to detect abnormal traffic including DDoS attacks and FE traffic. Subsequently, the Mahalanobis distance metric is employed to differentiate DDoS and FE traffic. the purposed method is validated using simulated DDoS attacks, real normal and FE traffic. The results revealed that the Mahalanobis distance metric works well in combination with machine learning approach to detect and discriminate DDoS and FE traffic in terms of false alarms and detection rate.
2020-10-19
Indira, K, Ajitha, P, Reshma, V, Tamizhselvi, A.  2019.  An Efficient Secured Routing Protocol for Software Defined Internet of Vehicles. 2019 International Conference on Computational Intelligence in Data Science (ICCIDS). :1–4.
Vehicular ad hoc network is one of most recent research areas to deploy intelligent Transport System. Due to their highly dynamic topology, energy constrained and no central point coordination, routing with minimal delay, minimal energy and maximize throughput is a big challenge. Software Defined Networking (SDN) is new paradigm to improve overall network lifetime. It incorporates dynamic changes with minimal end-end delay, and enhances network intelligence. Along with this, intelligence secure routing is also a major constraint. This paper proposes a novel approach to Energy efficient secured routing protocol for Software Defined Internet of vehicles using Restricted Boltzmann Algorithm. This algorithm is to detect hostile routes with minimum delay, minimum energy and maximum throughput compared with traditional routing protocols.
2020-10-05
Chowdhary, Ankur, Alshamrani, Adel, Huang, Dijiang.  2019.  SUPC: SDN enabled Universal Policy Checking in Cloud Network. 2019 International Conference on Computing, Networking and Communications (ICNC). :572–576.

Multi-tenant cloud networks have various security and monitoring service functions (SFs) that constitute a service function chain (SFC) between two endpoints. SF rule ordering overlaps and policy conflicts can cause increased latency, service disruption and security breaches in cloud networks. Software Defined Network (SDN) based Network Function Virtualization (NFV) has emerged as a solution that allows dynamic SFC composition and traffic steering in a cloud network. We propose an SDN enabled Universal Policy Checking (SUPC) framework, to provide 1) Flow Composition and Ordering by translating various SF rules into the OpenFlow format. This ensures elimination of redundant rules and policy compliance in SFC. 2) Flow conflict analysis to identify conflicts in header space and actions between various SF rules. Our results show a significant reduction in SF rules on composition. Additionally, our conflict checking mechanism was able to identify several rule conflicts that pose security, efficiency, and service availability issues in the cloud network.

2020-05-08
Chaudhary, Anshika, Mittal, Himangi, Arora, Anuja.  2019.  Anomaly Detection using Graph Neural Networks. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :346—350.

Conventional methods for anomaly detection include techniques based on clustering, proximity or classification. With the rapidly growing social networks, outliers or anomalies find ingenious ways to obscure themselves in the network and making the conventional techniques inefficient. In this paper, we utilize the ability of Deep Learning over topological characteristics of a social network to detect anomalies in email network and twitter network. We present a model, Graph Neural Network, which is applied on social connection graphs to detect anomalies. The combinations of various social network statistical measures are taken into account to study the graph structure and functioning of the anomalous nodes by employing deep neural networks on it. The hidden layer of the neural network plays an important role in finding the impact of statistical measure combination in anomaly detection.

2020-09-11
A., Jesudoss, M., Mercy Theresa.  2019.  Hardware-Independent Authentication Scheme Using Intelligent Captcha Technique. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1—7.

This paper provides hardware-independent authentication named as Intelligent Authentication Scheme, which rectifies the design weaknesses that may be exploited by various security attacks. The Intelligent Authentication Scheme protects against various types of security attacks such as password-guessing attack, replay attack, streaming bots attack (denial of service), keylogger, screenlogger and phishing attack. Besides reducing the overall cost, it also balances both security and usability. It is a unique authentication scheme.

2020-10-29
Mahajan, Ginika, Saini, Bhavna, Anand, Shivam.  2019.  Malware Classification Using Machine Learning Algorithms and Tools. 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP). :1—8.

Malware classification is the process of categorizing the families of malware on the basis of their signatures. This work focuses on classifying the emerging malwares on the basis of comparable features of similar malwares. This paper proposes a novel framework that categorizes malware samples into their families and can identify new malware samples for analysis. For this six diverse classification techniques of machine learning are used. To get more comparative and thus accurate classification results, analysis is done using two different tools, named as Knime and Orange. The work proposed can help in identifying and thus cleaning new malwares and classifying malware into their families. The correctness of family classification of malwares is investigated in terms of confusion matrix, accuracy and Cohen's Kappa. After evaluation it is analyzed that Random Forest gives the highest accuracy.

2020-03-27
Walker, Aaron, Amjad, Muhammad Faisal, Sengupta, Shamik.  2019.  Cuckoo’s Malware Threat Scoring and Classification: Friend or Foe? 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0678–0684.
Malware threat classification involves understanding the behavior of the malicious software and how it affects a victim host system. Classifying threats allows for measured response appropriate to the risk involved. Malware incident response depends on many automated tools for the classification of threat to help identify the appropriate reaction to a threat alert. Cuckoo Sandbox is one such tool which can be used for automated analysis of malware and one method of threat classification provided is a threat score. A security analyst might submit a suspicious file to Cuckoo for analysis to determine whether or not the file contains malware or performs potentially malicious behavior on a system. Cuckoo is capable of producing a report of this behavior and ranks the severity of the observed actions as a score from one to ten, with ten being the most severe. As such, a malware sample classified as an 8 would likely take priority over a sample classified as a 3. Unfortunately, this scoring classification can be misleading due to the underlying methodology of severity classification. In this paper we demonstrate why the current methodology of threat scoring is flawed and therefore we believe it can be improved with greater emphasis on analyzing the behavior of the malware. This allows for a threat classification rating which scales with the risk involved in the malware behavior.