Biblio

Found 3153 results

Filters: First Letter Of Last Name is B  [Clear All Filters]
2017-03-07
Burnap, P., Javed, A., Rana, O. F., Awan, M. S..  2015.  Real-time classification of malicious URLs on Twitter using machine activity data. 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :970–977.

Massive online social networks with hundreds of millions of active users are increasingly being used by Cyber criminals to spread malicious software (malware) to exploit vulnerabilities on the machines of users for personal gain. Twitter is particularly susceptible to such activity as, with its 140 character limit, it is common for people to include URLs in their tweets to link to more detailed information, evidence, news reports and so on. URLs are often shortened so the endpoint is not obvious before a person clicks the link. Cyber criminals can exploit this to propagate malicious URLs on Twitter, for which the endpoint is a malicious server that performs unwanted actions on the person's machine. This is known as a drive-by-download. In this paper we develop a machine classification system to distinguish between malicious and benign URLs within seconds of the URL being clicked (i.e. `real-time'). We train the classifier using machine activity logs created while interacting with URLs extracted from Twitter data collected during a large global event - the Superbowl - and test it using data from another large sporting event - the Cricket World Cup. The results show that machine activity logs produce precision performances of up to 0.975 on training data from the first event and 0.747 on a test data from a second event. Furthermore, we examine the properties of the learned model to explain the relationship between machine activity and malicious software behaviour, and build a learning curve for the classifier to illustrate that very small samples of training data can be used with only a small detriment to performance.

2017-03-08
Behjat-Jamal, S., Demirci, R., Rahkar-Farshi, T..  2015.  Hybrid bilateral filter. 2015 International Symposium on Computer Science and Software Engineering (CSSE). :1–6.

A variety of methods for images noise reduction has been developed so far. Most of them successfully remove noise but their edge preserving capabilities are weak. Therefore bilateral image filter is helpful to deal with this problem. Nevertheless, their performances depend on spatial and photometric parameters which are chosen by user. Conventionally, the geometric weight is calculated by means of distance of neighboring pixels and the photometric weight is calculated by means of color components of neighboring pixels. The range of weights is between zero and one. In this paper, geometric weights are estimated by fuzzy metrics and photometric weights are estimated by using fuzzy rule based system which does not require any predefined parameter. Experimental results of conventional, fuzzy bilateral filter and proposed approach have been included.

2017-02-23
K. Mpalane, H. D. Tsague, N. Gasela, B. M. Esiefarienrhe.  2015.  "Bit-Level Differential Power Analysis Attack on Implementations of Advanced Encryption Standard Software Running Inside a PIC18F2420 Microcontroller". 2015 International Conference on Computational Science and Computational Intelligence (CSCI). :42-46.

Small embedded devices such as microcontrollers have been widely used for identification, authentication, securing and storing confidential information. In all these applications, the security and privacy of the microcontrollers are of crucial importance. To provide strong security to protect data, these devices depend on cryptographic algorithms to ensure confidentiality and integrity of data. Moreover, many algorithms have been proposed, with each one having its strength and weaknesses. This paper presents a Differential Power Analysis(DPA) attack on hardware implementations of Advanced Encryption Standard(AES) running inside a PIC18F2420 microcontroller.

2017-02-27
Dou, Huijing, Bian, Tingting.  2015.  An effective information filtering method based on the LTE network. 2015 4th International Conference on Computer Science and Network Technology (ICCSNT). 01:1428–1432.

With the rapid development of the information technology, more and more high-speed networks came out. The 4G LTE network as a recently emerging network has gradually entered the mainstream of the communication network. This paper proposed an effective content-based information filtering based on the 4G LTE high-speed network by combing the content-based filter and traditional simple filter. Firstly, raw information is pre-processed by five-tuple filter. Secondly, we determine the topics and character of the source data by key nearest neighbor text classification after minimum-risk Bayesian classification. Finally, the improved AdaBoost algorithm achieves the four-level content-based information filtering. The experiments reveal that the effective information filtering method can be applied to the network security, big data analysis and other fields. It has high research value and market value.

2017-03-08
Santra, N., Biswas, S., Acharyya, S..  2015.  Neural modeling of Gene Regulatory Network using Firefly algorithm. 2015 IEEE UP Section Conference on Electrical Computer and Electronics (UPCON). :1–6.

Genes, proteins and other metabolites present in cellular environment exhibit a virtual network that represents the regulatory relationship among its constituents. This network is called Gene Regulatory Network (GRN). Computational reconstruction of GRN reveals the normal metabolic pathway as well as disease motifs. Availability of microarray gene expression data from normal and diseased tissues makes the job easier for computational biologists. Reconstruction of GRN is based on neural modeling. Here we have used discrete and continuous versions of a meta-heuristic algorithm named Firefly algorithm for structure and parameter learning of GRNs respectively. The discrete version for this problem is proposed by us and it has been applied to explore the discrete search space of GRN structure. To evaluate performance of the algorithm, we have used a widely used synthetic GRN data set. The algorithm shows an accuracy rate above 50% in finding GRN. The accuracy level of the performance of Firefly algorithm in structure and parameter optimization of GRN is promising.

2017-02-23
K. Alnaami, G. Ayoade, A. Siddiqui, N. Ruozzi, L. Khan, B. Thuraisingham.  2015.  "P2V: Effective Website Fingerprinting Using Vector Space Representations". 2015 IEEE Symposium Series on Computational Intelligence. :59-66.

Language vector space models (VSMs) have recently proven to be effective across a variety of tasks. In VSMs, each word in a corpus is represented as a real-valued vector. These vectors can be used as features in many applications in machine learning and natural language processing. In this paper, we study the effect of vector space representations in cyber security. In particular, we consider a passive traffic analysis attack (Website Fingerprinting) that threatens users' navigation privacy on the web. By using anonymous communication, Internet users (such as online activists) may wish to hide the destination of web pages they access for different reasons such as avoiding tyrant governments. Traditional website fingerprinting studies collect packets from the users' network and extract features that are used by machine learning techniques to reveal the destination of certain web pages. In this work, we propose the packet to vector (P2V) approach where we model website fingerprinting attack using word vector representations. We show how the suggested model outperforms previous website fingerprinting works.

2017-02-10
T. S. Chaware, B. K. Mishra.  2015.  "Secure communication using TPC and chaotic encryption". 2015 International Conference on Information Processing (ICIP). :615-620.

Compression, encryption, encoding and modulation at the transmitter side and reverse process at the receiver side are the major processes in any wireless communication system. All these steps were carried out separately before. But, in 1978 R. J. McEliece had proposed the concept of combining security and channel encoding techniques together. Many schemes are proposed by different researchers for this combine approach. Sharing the information securely, but at the same time maintaining acceptable bit error rate in such combine system is difficult. In this paper, a new technique for robust and secure wireless transmission of image combining Turbo Product Code (TPC) with chaotic encryption is proposed. Logistic map is used for chaotic encryption and TPC for channel encoding. Simulation results for this combined system are analyzed and it shows that TPC and chaotic combination gives secure transmission with acceptable data rate.

2017-03-08
Boykov, Y., Isack, H., Olsson, C., Ayed, I. B..  2015.  Volumetric Bias in Segmentation and Reconstruction: Secrets and Solutions. 2015 IEEE International Conference on Computer Vision (ICCV). :1769–1777.

Many standard optimization methods for segmentation and reconstruction compute ML model estimates for appearance or geometry of segments, e.g. Zhu-Yuille [23], Torr [20], Chan-Vese [6], GrabCut [18], Delong et al. [8]. We observe that the standard likelihood term in these formu-lations corresponds to a generalized probabilistic K-means energy. In learning it is well known that this energy has a strong bias to clusters of equal size [11], which we express as a penalty for KL divergence from a uniform distribution of cardinalities. However, this volumetric bias has been mostly ignored in computer vision. We demonstrate signif- icant artifacts in standard segmentation and reconstruction methods due to this bias. Moreover, we propose binary and multi-label optimization techniques that either (a) remove this bias or (b) replace it by a KL divergence term for any given target volume distribution. Our general ideas apply to continuous or discrete energy formulations in segmenta- tion, stereo, and other reconstruction problems.

Mondal, S., Bours, P..  2015.  Continuous Authentication in a real world settings. 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR). :1–6.

Continuous Authentication by analysing the user's behaviour profile on the computer input devices is challenging due to limited information, variability of data and the sparse nature of the information. As a result, most of the previous research was done as a periodic authentication, where the analysis was made based on a fixed number of actions or fixed time period. Also, the experimental data was obtained for most of the previous research in a very controlled condition, where the task and environment were fixed. In this paper, we will focus on actual continuous authentication that reacts on every single action performed by the user. The experimental data was collected in a complete uncontrolled condition from 52 users by using our data collection software. In our analysis, we have considered both keystroke and mouse usages behaviour pattern to avoid a situation where an attacker avoids detection by restricting to one input device because the continuous authentication system only checks the other input device. The result we have obtained from this research is satisfactory enough for further investigation on this domain.

Dangra, B. S., Rajput, D., Bedekar, M. V., Panicker, S. S..  2015.  Profiling of automobile drivers using car games. 2015 International Conference on Pervasive Computing (ICPC). :1–5.

In this paper we use car games as a simulator for real automobiles, and generate driving logs that contain the vehicle data. This includes values for parameters like gear used, speed, left turns taken, right turns taken, accelerator, braking and so on. From these parameters we have derived some more additional parameters and analyzed them. As the input from automobile driver is only routine driving, no explicit feedback is required; hence there are more chances of being able to accurately profile the driver. Experimentation and analysis from this logged data shows possibility that driver profiling can be done from vehicle data. Since the profiles are unique, these can be further used for a wide range of applications and can successfully exhibit typical driving characteristics of each user.

2018-05-17
Coogan, S., Aydin Gol, E., Arcak, M., Belta, C..  2015.  Controlling a network of signalized intersections from temporal logic specifications. Proceedings of the 2015 American Control Conference. :3919-3924.
2017-02-21
S. Chen, F. Xi, Z. Liu, B. Bao.  2015.  "Quadrature compressive sampling of multiband radar signals at sub-Landau rate". 2015 IEEE International Conference on Digital Signal Processing (DSP). :234-238.

Sampling multiband radar signals is an essential issue of multiband/multifunction radar. This paper proposes a multiband quadrature compressive sampling (MQCS) system to perform the sampling at sub-Landau rate. The MQCS system randomly projects the multiband signal into a compressive multiband one by modulating each subband signal with a low-pass signal and then samples the compressive multiband signal at Landau-rate with output of compressive measurements. The compressive inphase and quadrature (I/Q) components of each subband are extracted from the compressive measurements respectively and are exploited to recover the baseband I/Q components. As effective bandwidth of the compressive multiband signal is much less than that of the received multiband one, the sampling rate is much less than Landau rate of the received signal. Simulation results validate that the proposed MQCS system can effectively acquire and reconstruct the baseband I/Q components of the multiband signals.

2017-02-23
B. Yang, E. Martiri.  2015.  "Using Honey Templates to Augment Hash Based Biometric Template Protection". 2015 IEEE 39th Annual Computer Software and Applications Conference. 3:312-316.

Hash based biometric template protection schemes (BTPS), such as fuzzy commitment, fuzzy vault, and secure sketch, address the privacy leakage concern on the plain biometric template storage in a database through using cryptographic hash calculation for template verification. However, cryptographic hashes have only computational security whose being cracked shall leak the biometric feature in these BTPS; and furthermore, existing BTPS are rarely able to detect during a verification process whether a probe template has been leaked from the database or not (i.e., being used by an imposter or a genuine user). In this paper we tailor the "honeywords" idea, which was proposed to detect the hashed password cracking, to enable the detectability of biometric template database leakage. However, unlike passwords, biometric features encoded in a template cannot be renewed after being cracked and thus not straightforwardly able to be protected by the honeyword idea. To enable the honeyword idea on biometrics, diversifiability (and thus renewability) is required on the biometric features. We propose to use BTPS for his purpose in this paper and present a machine learning based protected template generation protocol to ensure the best anonymity of the generated sugar template (from a user's genuine biometric feature) among other honey ones (from synthesized biometric features).

2017-03-07
Bulbul, R., Ten, C. W., Wang, L..  2015.  Prioritization of MTTC-based combinatorial evaluation for hypothesized substations outages. 2015 IEEE Power Energy Society General Meeting. :1–5.

Exhaustive enumeration of a S-select-k problem for hypothesized substations outages can be practically infeasible due to exponential growth of combinations as both S and k numbers increase. This enumeration of worst-case substations scenarios from the large set, however, can be improved based on the initial selection sets with the root nodes and segments. In this paper, the previous work of the reverse pyramid model (RPM) is enhanced with prioritization of root nodes and defined segmentations of substation list based on mean-time-to-compromise (MTTC) value that is associated with each substation. Root nodes are selected based on the threshold values of the substation ranking on MTTC values and are segmented accordingly from the root node set. Each segmentation is then being enumerated with S-select-k module to identify worst-case scenarios. The lowest threshold value on the list, e.g., a substation with no assignment of MTTC or extremely low number, is completely eliminated. Simulation shows that this approach demonstrates similar outcome of the risk indices among all randomly generated MTTC of the IEEE 30-bus system.

2017-03-08
Xu, Kun, Bao, Xinzhong, Tao, Qiuyan.  2015.  Research on income distribution model of supply chain financing based on third-party trading platform. 2015 International Conference on Logistics, Informatics and Service Sciences (LISS). :1–6.

The stability and effectiveness of supply chain financing union are directly affected by income fluctuation and unequal distribution problems, subsequently making the economic interests of the involved parties impacted. In this paper, the incomes of the parties in the union were distributed using Shapley value from the perspective of cooperative game under the background of the supply chain financing based on third-party trading platform, and then correction factors were weighted by introducing risk correction factors and combining with analytic hierarchy process (AHP), in order to improve the original model. Finally, the feasibility of the scheme was proved using example.

Paone, J., Bolme, D., Ferrell, R., Aykac, D., Karnowski, T..  2015.  Baseline face detection, head pose estimation, and coarse direction detection for facial data in the SHRP2 naturalistic driving study. 2015 IEEE Intelligent Vehicles Symposium (IV). :174–179.

Keeping a driver focused on the road is one of the most critical steps in insuring the safe operation of a vehicle. The Strategic Highway Research Program 2 (SHRP2) has over 3,100 recorded videos of volunteer drivers during a period of 2 years. This extensive naturalistic driving study (NDS) contains over one million hours of video and associated data that could aid safety researchers in understanding where the driver's attention is focused. Manual analysis of this data is infeasible; therefore efforts are underway to develop automated feature extraction algorithms to process and characterize the data. The real-world nature, volume, and acquisition conditions are unmatched in the transportation community, but there are also challenges because the data has relatively low resolution, high compression rates, and differing illumination conditions. A smaller dataset, the head pose validation study, is available which used the same recording equipment as SHRP2 but is more easily accessible with less privacy constraints. In this work we report initial head pose accuracy using commercial and open source face pose estimation algorithms on the head pose validation data set.

2017-03-07
Amin, R., Islam, S. K. H., Biswas, G. P., Khan, M. K..  2015.  An efficient remote mutual authentication scheme using smart mobile phone over insecure networks. 2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–7.

To establish a secure connection between a mobile user and a remote server, this paper presents a session key agreement scheme through remote mutual authentication protocol by using mobile application software(MAS). We analyzed the security of our protocol informally, which confirms that the protocol is secure against all the relevant security attacks including off-line identity-password guessing attacks, user-server impersonation attacks, and insider attack. In addition, the widely accepted simulator tool AVISPA simulates the proposed protocol and confirms that the protocol is SAFE under the OFMC and CL-AtSe back-ends. Our protocol not only provide strong security against the relevant attacks, but it also achieves proper mutual authentication, user anonymity, known key secrecy and efficient password change operation. The performance comparison is also performed, which ensures that the protocol is efficient in terms of computation and communication costs.

Hu, Zhiyong, Baynard, C. W., Hu, Hongda, Fazio, M..  2015.  GIS mapping and spatial analysis of cybersecurity attacks on a florida university. 2015 23rd International Conference on Geoinformatics. :1–5.

As the centers of knowledge, discovery, and intellectual exploration, US universities provide appealing cybersecurity targets. Cyberattack origin patterns and relationships are not evident until data is visualized in maps and tested with statistical models. The current cybersecurity threat detection software utilized by University of North Florida's IT department records large amounts of attacks and attempted intrusions by the minute. This paper presents GIS mapping and spatial analysis of cybersecurity attacks on UNF. First, locations of cyberattack origins were detected by geographic Internet Protocol (GEO-IP) software. Second, GIS was used to map the cyberattack origin locations. Third, we used advanced spatial statistical analysis functions (exploratory spatial data analysis and spatial point pattern analysis) and R software to explore cyberattack patterns. The spatial perspective we promote is novel because there are few studies employing location analytics and spatial statistics in cyber-attack detection and prevention research.

2017-02-21
Shuhao Liu, Baochun Li.  2015.  "On scaling software-Defined Networking in wide-area networks". Tsinghua Science and Technology. 20:221-232.

Software-Defined Networking (SDN) has emerged as a promising direction for next-generation network design. Due to its clean-slate and highly flexible design, it is believed to be the foundational principle for designing network architectures and improving their flexibility, resilience, reliability, and security. As the technology matures, research in both industry and academia has designed a considerable number of tools to scale software-defined networks, in preparation for the wide deployment in wide-area networks. In this paper, we survey the mechanisms that can be used to address the scalability issues in software-defined wide-area networks. Starting from a successful distributed system, the Domain Name System, we discuss the essential elements to make a large scale network infrastructure scalable. Then, the existing technologies proposed in the literature are reviewed in three categories: scaling out/up the data plane and scaling the control plane. We conclude with possible research directions towards scaling software-defined wide-area networks.

2017-03-07
Dehghanniri, H., Letier, E., Borrion, H..  2015.  Improving security decision under uncertainty: A multidisciplinary approach. 2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–7.

Security decision-making is a critical task in tackling security threats affecting a system or process. It often involves selecting a suitable resolution action to tackle an identified security risk. To support this selection process, decision-makers should be able to evaluate and compare available decision options. This article introduces a modelling language that can be used to represent the effects of resolution actions on the stakeholders' goals, the crime process, and the attacker. In order to reach this aim, we develop a multidisciplinary framework that combines existing knowledge from the fields of software engineering, crime science, risk assessment, and quantitative decision analysis. The framework is illustrated through an application to a case of identity theft.

2017-03-08
Idrus, S. Z. Syed, Cherrier, E., Rosenberger, C., Mondal, S., Bours, P..  2015.  Keystroke dynamics performance enhancement with soft biometrics. IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015). :1–7.

It is accepted that the way a person types on a keyboard contains timing patterns, which can be used to classify him/her, is known as keystroke dynamics. Keystroke dynamics is a behavioural biometric modality, whose performances, however, are worse than morphological modalities such as fingerprint, iris recognition or face recognition. To cope with this, we propose to combine keystroke dynamics with soft biometrics. Soft biometrics refers to biometric characteristics that are not sufficient to authenticate a user (e.g. height, gender, skin/eye/hair colour). Concerning keystroke dynamics, three soft categories are considered: gender, age and handedness. We present different methods to combine the results of a classical keystroke dynamics system with such soft criteria. By applying simple sum and multiply rules, our experiments suggest that the combination approach performs better than the classification approach with best result of 5.41% of equal error rate. The efficiency of our approaches is illustrated on a public database.

2017-02-27
Gonzalez-Longatt, F., Carmona-Delgado, C., Riquelme, J., Burgos, M., Rueda, J. L..  2015.  Risk-based DC security assessment for future DC-independent system operator. 2015 International Conference on Energy Economics and Environment (ICEEE). :1–8.

The use of multi-terminal HVDC to integrate wind power coming from the North Sea opens de door for a new transmission system model, the DC-Independent System Operator (DC-ISO). DC-ISO will face highly stressed and varying conditions that requires new risk assessment tools to ensure security of supply. This paper proposes a novel risk-based static security assessment methodology named risk-based DC security assessment (RB-DCSA). It combines a probabilistic approach to include uncertainties and a fuzzy inference system to quantify the systemic and individual component risk associated with operational scenarios considering uncertainties. The proposed methodology is illustrated using a multi-terminal HVDC system where the variability of wind speed at the offshore wind is included.

2017-03-08
Saxena, U., Bachhan, O. P., Majumdar, R..  2015.  Static and dynamic malware behavioral analysis based on arm based board. 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom). :272–277.

A trap set to detect attempts at unauthorized use of information systems. But setting up these honeypots and keep these guzzling electricity 24X7 is rather expensive. Plus there is always a risk of a skillful hacker or a deadly malware may break through this and compromise the whole system. Honeypot name suggest, a pot that contents full of honey to allure beers, but in networks Scenario honeypot is valuable tool that helps to allure attackers. It helps to detect and analyze malicious activity over your network. However honeypots used for commercial organization do not share data and large honeypot gives read only data. We propose an Arm based device having all capability of honeypots to allure attackers. Current honeypots are based on large Network but we are trying to make s device which have the capabilities to establish in small network and cost effective. This research helps us to make a device based on arm board and CCFIS Software to allure attackers which is easy to install and cost effective. CCFIS Sensor helps us to Capture malware and Analysis the attack. In this we did reverse Engineering of honeypots to know about how it captures malware. During reverse engineering we know about pros and cons of honeypots that are mitigated in CCFIS Sensor. After Completion of device we compared honeypots and CCFIS Sensor to check the effectiveness of device.

2015-05-05
Vellaithurai, C., Srivastava, A., Zonouz, S., Berthier, R..  2015.  CPIndex: Cyber-Physical Vulnerability Assessment for Power-Grid Infrastructures. Smart Grid, IEEE Transactions on. 6:566-575.

To protect complex power-grid control networks, power operators need efficient security assessment techniques that take into account both cyber side and the power side of the cyber-physical critical infrastructures. In this paper, we present CPINDEX, a security-oriented stochastic risk management technique that calculates cyber-physical security indices to measure the security level of the underlying cyber-physical setting. CPINDEX installs appropriate cyber-side instrumentation probes on individual host systems to dynamically capture and profile low-level system activities such as interprocess communications among operating system assets. CPINDEX uses the generated logs along with the topological information about the power network configuration to build stochastic Bayesian network models of the whole cyber-physical infrastructure and update them dynamically based on the current state of the underlying power system. Finally, CPINDEX implements belief propagation algorithms on the created stochastic models combined with a novel graph-theoretic power system indexing algorithm to calculate the cyber-physical index, i.e., to measure the security-level of the system's current cyber-physical state. The results of our experiments with actual attacks against a real-world power control network shows that CPINDEX, within few seconds, can efficiently compute the numerical indices during the attack that indicate the progressing malicious attack correctly.
 

Hong Wen, Jie Tang, Jinsong Wu, Huanhuan Song, Tingyong Wu, Bin Wu, Pin-Han Ho, Shi-Chao Lv, Li-Min Sun.  2015.  A Cross-Layer Secure Communication Model Based on Discrete Fractional Fourier Fransform (DFRFT). Emerging Topics in Computing, IEEE Transactions on. 3:119-126.

Discrete fractional Fourier transform (DFRFT) is a generalization of discrete Fourier transform. There are a number of DFRFT proposals, which are useful for various signal processing applications. This paper investigates practical solutions toward the construction of unconditionally secure communication systems based on DFRFT via cross-layer approach. By introducing a distort signal parameter, the sender randomly flip-flops between the distort signal parameter and the general signal parameter to confuse the attacker. The advantages of the legitimate partners are guaranteed. We extend the advantages between legitimate partners via developing novel security codes on top of the proposed cross-layer DFRFT security communication model, aiming to achieve an error-free legitimate channel while preventing the eavesdropper from any useful information. Thus, a cross-layer strong mobile communication secure model is built.