Biblio
We determine the semantic security capacity for quantum wiretap channels. We extend methods for classical channels to quantum channels to demonstrate that a strongly secure code guarantees a semantically secure code with the same secrecy rate. Furthermore, we show how to transform a non-secure code into a semantically secure code by means of biregular irreducible functions (BRI functions). We analyze semantic security for classical-quantum channels and for quantum channels.
In unsecured communications settings, ascertaining the trustworthiness of received information, called authentication, is paramount. We consider keyless authentication over an arbitrarily-varying channel, where channel states are chosen by a malicious adversary with access to noisy versions of transmitted sequences. We have shown previously that a channel condition termed U-overwritability is a sufficient condition for zero authentication capacity over such a channel, and also that with a deterministic encoder, a sufficiently clear-eyed adversary is essentially omniscient. In this paper, we show that even if the authentication capacity with a deterministic encoder and an essentially omniscient adversary is zero, allowing a stochastic encoder can result in a positive authentication capacity. Furthermore, the authentication capacity with a stochastic encoder can be equal to the no-adversary capacity of the underlying channel in this case. We illustrate this for a binary channel model, which provides insight into the more general case.
Internet of Things devices and data sources areseeing increased use in various application areas. The pro-liferation of cheaper sensor hardware has allowed for widerscale data collection deployments. With increased numbers ofdeployed sensors and the use of heterogeneous sensor typesthere is increased scope for collecting erroneous, inaccurate orinconsistent data. This in turn may lead to inaccurate modelsbuilt from this data. It is important to evaluate this data asit is collected to determine its validity. This paper presents ananalysis of data quality as it is represented in Internet of Things(IoT) systems and some of the limitations of this representation. The paper discusses the use of trust as a heuristic to drive dataquality measurements. Trust is a well-established metric that hasbeen used to determine the validity of a piece or source of datain crowd sourced or other unreliable data collection techniques. The analysis extends to detail an appropriate framework forrepresenting data quality effectively within the big data modeland why a trust backed framework is important especially inheterogeneously sourced IoT data streams.
With the advancements in technology, the ease of interconnectedness among devices has increased manifold, leading to the widespread usage of Internet of Things. Internet of Things has also reached our homes, often referred to as domestic Internet of Things. However, the security aspect of domestic Internet of Things has largely been under question as the increase in inter-device communication renders the system more vulnerable to adversaries. Largely popular blockchain technology is being extensively researched for integration into the Internet of Things framework in order to improve the security aspect of the framework. Blockchain, being a cryptographically linked set of data, has a few barriers which prevent it from being successfully integrated to Internet of Things. One of the major barrier is the high computational requirements and time latency associated with it. This work tries to address this research gap and proposes a novel scalable blockchain optimization for domestic Internet of Things. The proposed blockchain model uses a flow based filtering technique as an added security layer to facilitate the scenario. This work then evaluates the performance of the proposed model in various scenarios and compares it with that of traditional blockchain. The work presents a largely encompassing evaluation, explanation and assessment of the proposed model.
Lately mining of information from online life is pulling in more consideration because of the blast in the development of Big Data. In security, Big Data manages an assortment of immense advanced data for investigating, envisioning and to draw the bits of knowledge for the expectation and anticipation of digital assaults. Big Data Analytics (BDA) is the term composed by experts to portray the art of dealing with, taking care of and gathering a great deal of data for future evaluation. Data is being made at an upsetting rate. The quick improvement of the Internet, Internet of Things (IoT) and other creative advances are the rule liable gatherings behind this proceeded with advancement. The data made is an impression of the earth, it is conveyed out of, along these lines can use the data got away from structures to understand the internal exercises of that system. This has become a significant element in cyber security where the objective is to secure resources. Moreover, the developing estimation of information has made large information a high worth objective. Right now, investigate ongoing exploration works in cyber security comparable to huge information and feature how Big information is secured and how huge information can likewise be utilized as a device for cyber security. Simultaneously, a Big Data based concentrated log investigation framework is actualized to distinguish the system traffic happened with assailants through DDOS, SQL Injection and Bruce Force assault. The log record is naturally transmitted to the brought together cloud server and big information is started in the investigation process.
Cybercrime is growing dramatically in the technological world nowadays. World Wide Web criminals exploit the personal information of internet users and use them to their advantage. Unethical users leverage the dark web to buy and sell illegal products or services and sometimes they manage to gain access to classified government information. A number of illegal activities that can be found in the dark web include selling or buying hacking tools, stolen data, digital fraud, terrorists activities, drugs, weapons, and more. The aim of this project is to collect evidence of any malicious activity in the dark web by using computer security mechanisms as traps called honeypots.
Despite the latest initiatives and research efforts to increase user privacy in digital scenarios, identity-related cybercrimes such as identity theft, wrong identity or user transactions surveillance are growing. In particular, blanket surveillance that might be potentially accomplished by Identity Providers (IdPs) contradicts the data minimization principle laid out in GDPR. Hence, user movements across Service Providers (SPs) might be tracked by malicious IdPs that become a central dominant entity, as well as a single point of failure in terms of privacy and security, putting users at risk when compromised. To cope with this issue, the OLYMPUS H2020 EU project is devising a truly privacy-preserving, yet user-friendly, and distributed identity management system that addresses the data minimization challenge in both online and offline scenarios. Thus, OLYMPUS divides the role of the IdP among various authorities by relying on threshold cryptography, thereby preventing user impersonation and surveillance from malicious or nosy IdPs. This paper overviews the OLYMPUS framework, including requirements considered, the proposed architecture, a series of use cases as well as the privacy analysis from the legal point of view.
This work considers the trade-off between security and performance when revealing partial information about encrypted data computed on. The focus of our work is on information revealed through control flow side-channels when executing programs on encrypted data. We use quantitative information flow to measure security, running time to measure performance and program transformation techniques to alter the trade-off between the two. Combined with information flow policies, we perform a policy-aware security and performance trade-off (PASAPTO) analysis. We formalize the problem of PASAPTO analysis as an optimization problem, prove the NP-hardness of the corresponding decision problem and present two algorithms solving it heuristically. We implemented our algorithms and combined them with the Dataflow Authentication (DFAuth) approach for outsourcing sensitive computations. Our DFAuth Trade-off Analyzer (DFATA) takes Java Bytecode operating on plaintext data and an associated information flow policy as input. It outputs semantically equivalent program variants operating on encrypted data which are policy-compliant and approximately Pareto-optimal with respect to leakage and performance. We evaluated DFATA in a commercial cloud environment using Java programs, e.g., a decision tree program performing machine learning on medical data. The decision tree variant with the worst performance is 357% slower than the fastest variant. Leakage varies between 0% and 17% of the input.
There are various Lightweight Block Ciphers (LBC) nowadays that exist to meet the demand on security requirements of the current trend in computing world, the application in the resource-constrained devices, and the Internet of Things (IoT) technologies. One way to evaluate these LBCs is to conduct a performance analysis. Performance evaluation parameters seek appropriate value such as encryption time, security level, scalability, and flexibility. Like SIMECK block cipher whose algorithm design was anchored with the SIMON and SPECK block ciphers were efficient in security and performance, there is a need to revisit its design. This paper aims to present a comparative study on the performance analysis of the enhanced round function of the SIMECK Family block cipher. The enhanced ARX structure of the round function on the three variants shows an efficient performance over the original algorithm in different simulations using the following methods of measurement; avalanche effect, runtime performance, and brute-force attack. Its recommended that the enhanced round function of the SIMECK family be evaluated by different security measurements and attacks.
E- Health systems, specifically, Telecare Medical Information Systems (TMIS), are deployed in order to provide patients with specific diseases with healthcare services that are usually based on remote monitoring. Therefore, making an efficient, convenient and secure connection between users and medical servers over insecure channels within medical services is a rather major issue. In this context, because of the biometrics' characteristics, many biometrics-based three factor user authentication schemes have been proposed in the literature to secure user/server communication within medical services. In this paper, we make a brief study of the most interesting proposals. Then, we propose a new three-factor authentication and key agreement scheme for TMIS. Our scheme tends not only to fix the security drawbacks of some studied related work, but also, offers additional significant features while minimizing resource consumption. In addition, we perform a formal verification using the widely accepted formal security verification tool AVISPA to demonstrate that our proposed scheme is secure. Also, our comparative performance analysis reveals that our proposed scheme provides a lower resource consumption compared to other related work's proposals.
The development in the web technologies given growth to the new application that will make the voting process very easy and proficient. The E-voting helps in providing convenient, capture and count the votes in an election. This project provides the description about e-voting using an Android platform. The proposed e-voting system helps the user to cast the vote without visiting the polling booth. The application provides authentication measures in order to avoid fraud voters using the OTP. Once the voting process is finished the results will be available within a fraction of seconds. All the casted vote count is encrypted using AES256 algorithm and stored in the database in order to avoid any outbreaks and revelation of results by third person other than the administrator.
Using the blockchain technology to store the privatedocuments of individuals will help make data more reliable and secure, preventing the loss of data and unauthorized access. The Consensus algorithm along with the hash algorithms maintains the integrity of data simultaneously providing authentication and authorization. The paper incorporates the block chain and the Identity Based Encryption management concept. The Identity based Management system allows the encryption of the user's data as well as their identity and thus preventing them from Identity theft and fraud. These two technologies combined will result in a more secure way of storing the data and protecting the privacy of the user.
This paper analyzes security problems of modern computer systems caused by vulnerabilities in their operating systems (OSs). Our scrutiny of widely used enterprise OSs focuses on their vulnerabilities by examining the statistical data available on how vulnerabilities in these systems are disclosed and eliminated, and by assessing their criticality. This is done by using statistics from both the National Vulnerabilities Database and the Common Vulnerabilities and Exposures System. The specific technical areas the paper covers are the quantitative assessment of forever-day vulnerabilities, estimation of days-of-grey-risk, the analysis of the vulnerabilities severity and their distributions by attack vector and impact on security properties. In addition, the study aims to explore those vulnerabilities that have been found across a diverse range of OSs. This leads us to analyzing how different intrusion-tolerant architectures deploying the OS diversity impact availability, integrity, and confidentiality.