Biblio

Found 3153 results

Filters: First Letter Of Last Name is B  [Clear All Filters]
2021-03-18
Banday, M. T., Sheikh, S. A..  2020.  Improving Security Control of Text-Based CAPTCHA Challenges using Honeypot and Timestamping. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :704—708.

The resistance to attacks aimed to break CAPTCHA challenges and the effectiveness, efficiency and satisfaction of human users in solving them called usability are the two major concerns while designing CAPTCHA schemes. User-friendliness, universality, and accessibility are related dimensions of usability, which must also be addressed adequately. With recent advances in segmentation and optical character recognition techniques, complex distortions, degradations and transformations are added to text-based CAPTCHA challenges resulting in their reduced usability. The extent of these deformations can be decreased if some additional security mechanism is incorporated in such challenges. This paper proposes an additional security mechanism that can add an extra layer of protection to any text-based CAPTCHA challenge, making it more challenging for bots and scripts that might be used to attack websites and web applications. It proposes the use of hidden text-boxes for user entry of CAPTCHA string which serves as honeypots for bots and automated scripts. The honeypot technique is used to trick bots and automated scripts into filling up input fields which legitimate human users cannot fill in. The paper reports implementation of honeypot technique and results of tests carried out over three months during which form submissions were logged for analysis. The results demonstrated great effectiveness of honeypots technique to improve security control and usability of text-based CAPTCHA challenges.

2021-06-30
Bonafini, Stefano, Bassoli, Riccardo, Granelli, Fabrizio, Fitzek, Frank H.P., Sacchi, Claudio.  2020.  Virtual Baseband Unit Splitting Exploiting Small Satellite Platforms. 2020 IEEE Aerospace Conference. :1—14.
Recently, border monitoring and security has become an important topic since current methods against illegal immigration are expensive and inefficient. In particular, inefficiency and ineffectiveness increase when monitoring operations are focused on complex borders, where there is no available/reliable connectivity. In the last decade, the deployment of different kinds of unmanned aerial vehicles was seen as the main paradigm to provide on-demand wireless network access. Significant research work has been done on so called mobile base stations. Nevertheless, drones have specific technical limitations in terms, for example, of battery life and carried weight. Given above fundamental limits, network virtualization becomes a fundamental paradigm for system realization. In the last years, baseband processing was not seen any more as a monolithic block but has been studied as a chain of virtual functions. Especially, baseband unit can be split into five sub-blocks belonging to layer 1 to layer 3, where each degree of splitting implies more and more stringent requirements to be guaranteed, mainly in terms of throughput and latency. Split E is the logic separation of hybrid automatic repeat request from lower layers, which imposes the most flexible requirements. On the other hand, Split D (forward error correction, encoding/decoding logic functions) sets more stringent bounds on throughput and latency so that it requires careful study and detailed analysis for a correct system-level design. The main objective of this article is to study theoretically and numerically (i.e. via simulations) Split D to make it feasible with the help of small satellites. The paper will study the structure and the capabilities of small satellites to be used as small data centers to host radio access virtual network functions like forward error correction. The theoretical analysis is supported by simulations in order to highlight advantages and challenges of the proposed approach.
2021-11-30
Aksenov, Alexander, Borisov, Vasilii, Shadrin, Denis, Porubov, Andrey, Kotegova, Anna, Sozykin, Andrey.  2020.  Competencies Ontology for the Analysis of Educational Programs. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :368–371.
The following topics are dealt with: diseases; medical signal processing; learning (artificial intelligence); security of data; blood; patient treatment; patient monitoring; bioelectric phenomena; biomedical electrodes; biological tissues.
2020-12-14
Boualouache, A., Soua, R., Engel, T..  2020.  SDN-based Misbehavior Detection System for Vehicular Networks. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1–5.
Vehicular networks are vulnerable to a variety of internal attacks. Misbehavior Detection Systems (MDS) are preferred over the cryptography solutions to detect such attacks. However, the existing misbehavior detection systems are static and do not adapt to the context of vehicles. To this end, we exploit the Software-Defined Networking (SDN) paradigm to propose a context-aware MDS. Based on the context, our proposed system can tune security parameters to provide accurate detection with low false positives. Our system is Sybil attack-resistant and compliant with vehicular privacy standards. The simulation results show that, under different contexts, our system provides a high detection ratio and low false positives compared to a static MDS.
2021-11-30
Subramanian, Vinod, Pankajakshan, Arjun, Benetos, Emmanouil, Xu, Ning, McDonald, SKoT, Sandler, Mark.  2020.  A Study on the Transferability of Adversarial Attacks in Sound Event Classification. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :301–305.
An adversarial attack is an algorithm that perturbs the input of a machine learning model in an intelligent way in order to change the output of the model. An important property of adversarial attacks is transferability. According to this property, it is possible to generate adversarial perturbations on one model and apply it the input to fool the output of a different model. Our work focuses on studying the transferability of adversarial attacks in sound event classification. We are able to demonstrate differences in transferability properties from those observed in computer vision. We show that dataset normalization techniques such as z-score normalization does not affect the transferability of adversarial attacks and we show that techniques such as knowledge distillation do not increase the transferability of attacks.
2021-10-12
Hassan, Wajih Ul, Bates, Adam, Marino, Daniel.  2020.  Tactical Provenance Analysis for Endpoint Detection and Response Systems. 2020 IEEE Symposium on Security and Privacy (SP). :1172–1189.
Endpoint Detection and Response (EDR) tools provide visibility into sophisticated intrusions by matching system events against known adversarial behaviors. However, current solutions suffer from three challenges: 1) EDR tools generate a high volume of false alarms, creating backlogs of investigation tasks for analysts; 2) determining the veracity of these threat alerts requires tedious manual labor due to the overwhelming amount of low-level system logs, creating a "needle-in-a-haystack" problem; and 3) due to the tremendous resource burden of log retention, in practice the system logs describing long-lived attack campaigns are often deleted before an investigation is ever initiated.This paper describes an effort to bring the benefits of data provenance to commercial EDR tools. We introduce the notion of Tactical Provenance Graphs (TPGs) that, rather than encoding low-level system event dependencies, reason about causal dependencies between EDR-generated threat alerts. TPGs provide compact visualization of multi-stage attacks to analysts, accelerating investigation. To address EDR's false alarm problem, we introduce a threat scoring methodology that assesses risk based on the temporal ordering between individual threat alerts present in the TPG. In contrast to the retention of unwieldy system logs, we maintain a minimally-sufficient skeleton graph that can provide linkability between existing and future threat alerts. We evaluate our system, RapSheet, using the Symantec EDR tool in an enterprise environment. Results show that our approach can rank truly malicious TPGs higher than false alarm TPGs. Moreover, our skeleton graph reduces the long-term burden of log retention by up to 87%.
2021-04-27
Balestrieri, E., Vito, L. D., Picariello, F., Rapuano, S., Tudosa, I..  2020.  A TDoA-based Measurement Method for RF Emitters Localization by Exploiting Wideband Compressive Sampling. 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). :1–6.
This paper proposes a Time Difference of Arrival (TDoA) based method for the localization of Radio Frequency (RF) emitters working at different carriers, by using wideband spectrum sensors exploiting compressive sampling. The proposed measurement method is based on four or more RF receivers, with known Cartesian positions, performing non uniform sampling on the received signal. By means of simulations, the method has been compared against a localization method adopting RF receivers performing uniform sampling at Nyquist rate. The obtained preliminary results demonstrate that the method is capable of localizing two RF emitters achieving the same results obtained with uniform sampling, with a compression ratio up to CR = 20.
2020-12-28
Slavic, G., Campo, D., Baydoun, M., Marin, P., Martin, D., Marcenaro, L., Regazzoni, C..  2020.  Anomaly Detection in Video Data Based on Probabilistic Latent Space Models. 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS). :1—8.

This paper proposes a method for detecting anomalies in video data. A Variational Autoencoder (VAE) is used for reducing the dimensionality of video frames, generating latent space information that is comparable to low-dimensional sensory data (e.g., positioning, steering angle), making feasible the development of a consistent multi-modal architecture for autonomous vehicles. An Adapted Markov Jump Particle Filter defined by discrete and continuous inference levels is employed to predict the following frames and detecting anomalies in new video sequences. Our method is evaluated on different video scenarios where a semi-autonomous vehicle performs a set of tasks in a closed environment.

2021-04-09
Fourastier, Y., Baron, C., Thomas, C., Esteban, P..  2020.  Assurance levels for decision making in autonomous intelligent systems and their safety. 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT). :475—483.
The autonomy of intelligent systems and their safety rely on their ability for local decision making based on collected environmental information. This is even more for cyber-physical systems running safety critical activities. While this intelligence is partial and fragmented, and cognitive techniques are of limited maturity, the decision function must produce results whose validity and scope must be weighted in light of the underlying assumptions, unavoidable uncertainty and hypothetical safety limitation. Besides the cognitive techniques dependability, it is about the assurance level of the decision self-making. Beyond the pure decision-making capabilities of the autonomous intelligent system, we need techniques that guarantee the system assurance required for the intended use. Security mechanisms for cognitive systems may be consequently tightly intricated. We propose a trustworthiness module which is part of the system and its resulting safety. In this paper, we briefly review the state of the art regarding the dependability of cognitive techniques, the assurance level definition in this context, and related engineering practices. We elaborate regarding the design of autonomous intelligent systems safety, then we discuss its security design and approaches for the mitigation of safety violations by the cognitive functions.
2020-12-28
Barni, M., Nowroozi, E., Tondi, B., Zhang, B..  2020.  Effectiveness of Random Deep Feature Selection for Securing Image Manipulation Detectors Against Adversarial Examples. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2977—2981.

We investigate if the random feature selection approach proposed in [1] to improve the robustness of forensic detectors to targeted attacks, can be extended to detectors based on deep learning features. In particular, we study the transferability of adversarial examples targeting an original CNN image manipulation detector to other detectors (a fully connected neural network and a linear SVM) that rely on a random subset of the features extracted from the flatten layer of the original network. The results we got by considering three image manipulation detection tasks (resizing, median filtering and adaptive histogram equalization), two original network architectures and three classes of attacks, show that feature randomization helps to hinder attack transferability, even if, in some cases, simply changing the architecture of the detector, or even retraining the detector is enough to prevent the transferability of the attacks.

2021-04-27
Sharma, S., Zavarsky, P., Butakov, S..  2020.  Machine Learning based Intrusion Detection System for Web-Based Attacks. 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :227—230.

Various studies have been performed to explore the feasibility of detection of web-based attacks by machine learning techniques. False-positive and false-negative results have been reported as a major issue to be addressed to make machine learning-based detection and prevention of web-based attacks reliable and trustworthy. In our research, we tried to identify and address the root cause of the false-positive and false-negative results. In our experiment, we used the CSIC 2010 HTTP dataset, which contains the generated traffic targeted to an e-commerce web application. Our experimental results demonstrate that applying the proposed fine-tuned feature set extraction results in improved detection and classification of web-based attacks for all tested machine learning algorithms. The performance of the machine learning algorithm in the detection of attacks was evaluated by the Precision, Recall, Accuracy, and F-measure metrics. Among three tested algorithms, the J48 decision tree algorithm provided the highest True Positive rate, Precision, and Recall.

2021-08-17
Kurth, Michael, Gras, Ben, Andriesse, Dennis, Giuffrida, Cristiano, Bos, Herbert, Razavi, Kaveh.  2020.  NetCAT: Practical Cache Attacks from the Network. 2020 IEEE Symposium on Security and Privacy (SP). :20—38.
Increased peripheral performance is causing strain on the memory subsystem of modern processors. For example, available DRAM throughput can no longer sustain the traffic of a modern network card. Scrambling to deliver the promised performance, instead of transferring peripheral data to and from DRAM, modern Intel processors perform I/O operations directly on the Last Level Cache (LLC). While Direct Cache Access (DCA) instead of Direct Memory Access (DMA) is a sensible performance optimization, it is unfortunately implemented without care for security, as the LLC is now shared between the CPU and all the attached devices, including the network card.In this paper, we reverse engineer the behavior of DCA, widely referred to as Data-Direct I/O (DDIO), on recent Intel processors and present its first security analysis. Based on our analysis, we present NetCAT, the first Network-based PRIME+PROBE Cache Attack on the processor's LLC of a remote machine. We show that NetCAT not only enables attacks in cooperative settings where an attacker can build a covert channel between a network client and a sandboxed server process (without network), but more worryingly, in general adversarial settings. In such settings, NetCAT can enable disclosure of network timing-based sensitive information. As an example, we show a keystroke timing attack on a victim SSH connection belonging to another client on the target server. Our results should caution processor vendors against unsupervised sharing of (additional) microarchitectural components with peripherals exposed to malicious input.
2021-01-11
Fomin, I., Burin, V., Bakhshiev, A..  2020.  Research on Neural Networks Integration for Object Classification in Video Analysis Systems. 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1—5.

Object recognition with the help of outdoor video surveillance cameras is an important task in the context of ensuring the security at enterprises, public places and even private premises. There have long existed systems that allow detecting moving objects in the image sequence from a video surveillance system. Such a system is partially considered in this research. It detects moving objects using a background model, which has certain problems. Due to this some objects are missed or detected falsely. We propose to combine the moving objects detection results with the classification, using a deep neural network. This will allow determining whether a detected object belongs to a certain class, sorting out false detections, discarding the unnecessary ones (sometimes individual classes are unwanted), to divide detected people into the employees in the uniform and all others, etc. The authors perform a network training in the Keras developer-friendly environment that provides for quick building, changing and training of network architectures. The performance of the Keras integration into a video analysis system, using direct Python script execution techniques, is between 6 and 52 ms, while the precision is between 59.1% and 97.2% for different architectures. The integration, made by freezing a selected network architecture with weights, is selected after testing. After that, frozen architecture can be imported into video analysis using the TensorFlow interface for C++. The performance of such type of integration is between 3 and 49 ms. The precision is between 63.4% and 97.8% for different architectures.

2021-07-27
Dinesh, S., Burow, N., Xu, D., Payer, M..  2020.  RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization. 2020 IEEE Symposium on Security and Privacy (SP). :1497—1511.
Analyzing the security of closed source binaries is currently impractical for end-users, or even developers who rely on third-party libraries. Such analysis relies on automatic vulnerability discovery techniques, most notably fuzzing with sanitizers enabled. The current state of the art for applying fuzzing or sanitization to binaries is dynamic binary translation, which has prohibitive performance overhead. The alternate technique, static binary rewriting, cannot fully recover symbolization information and hence has difficulty modifying binaries to track code coverage for fuzzing or to add security checks for sanitizers.The ideal solution for binary security analysis would be a static rewriter that can intelligently add the required instrumentation as if it were inserted at compile time. Such instrumentation requires an analysis to statically disambiguate between references and scalars, a problem known to be undecidable in the general case. We show that recovering this information is possible in practice for the most common class of software and libraries: 64-bit, position independent code. Based on this observation, we develop RetroWrite, a binary-rewriting instrumentation to support American Fuzzy Lop (AFL) and Address Sanitizer (ASan), and show that it can achieve compiler-level performance while retaining precision. Binaries rewritten for coverage-guided fuzzing using RetroWrite are identical in performance to compiler-instrumented binaries and outperform the default QEMU-based instrumentation by 4.5x while triggering more bugs. Our implementation of binary-only Address Sanitizer is 3x faster than Valgrind's memcheck, the state-of-the-art binary-only memory checker, and detects 80% more bugs in our evaluation.
2021-05-05
Nienhuis, Kyndylan, Joannou, Alexandre, Bauereiss, Thomas, Fox, Anthony, Roe, Michael, Campbell, Brian, Naylor, Matthew, Norton, Robert M., Moore, Simon W., Neumann, Peter G. et al..  2020.  Rigorous engineering for hardware security: Formal modelling and proof in the CHERI design and implementation process. 2020 IEEE Symposium on Security and Privacy (SP). :1003—1020.

The root causes of many security vulnerabilities include a pernicious combination of two problems, often regarded as inescapable aspects of computing. First, the protection mechanisms provided by the mainstream processor architecture and C/C++ language abstractions, dating back to the 1970s and before, provide only coarse-grain virtual-memory-based protection. Second, mainstream system engineering relies almost exclusively on test-and-debug methods, with (at best) prose specifications. These methods have historically sufficed commercially for much of the computer industry, but they fail to prevent large numbers of exploitable bugs, and the security problems that this causes are becoming ever more acute.In this paper we show how more rigorous engineering methods can be applied to the development of a new security-enhanced processor architecture, with its accompanying hardware implementation and software stack. We use formal models of the complete instruction-set architecture (ISA) at the heart of the design and engineering process, both in lightweight ways that support and improve normal engineering practice - as documentation, in emulators used as a test oracle for hardware and for running software, and for test generation - and for formal verification. We formalise key intended security properties of the design, and establish that these hold with mechanised proof. This is for the same complete ISA models (complete enough to boot operating systems), without idealisation.We do this for CHERI, an architecture with hardware capabilities that supports fine-grained memory protection and scalable secure compartmentalisation, while offering a smooth adoption path for existing software. CHERI is a maturing research architecture, developed since 2010, with work now underway on an Arm industrial prototype to explore its possible adoption in mass-market commercial processors. The rigorous engineering work described here has been an integral part of its development to date, enabling more rapid and confident experimentation, and boosting confidence in the design.

2021-03-29
Ouiazzane, S., Addou, M., Barramou, F..  2020.  Toward a Network Intrusion Detection System for Geographic Data. 2020 IEEE International conference of Moroccan Geomatics (Morgeo). :1—7.

The objective of this paper is to propose a model of a distributed intrusion detection system based on the multi-agent paradigm and the distributed file system (HDFS). Multi-agent systems (MAS) are very suitable to intrusion detection systems as they can address the issue of geographic data security in terms of autonomy, distribution and performance. The proposed system is based on a set of autonomous agents that cooperate and collaborate with each other to effectively detect intrusions and suspicious activities that may impact geographic information systems. Our system allows the detection of known and unknown computer attacks without any human intervention (Security Experts) unlike traditional intrusion detection systems that rely on knowledge bases as a mechanism to detect known attacks. The proposed model allows a real time detection of known and unknown attacks within large networks hosting geographic data.

2021-05-26
Boursinos, Dimitrios, Koutsoukos, Xenofon.  2020.  Trusted Confidence Bounds for Learning Enabled Cyber-Physical Systems. 2020 IEEE Security and Privacy Workshops (SPW). :228—233.

Cyber-physical systems (CPS) can benefit by the use of learning enabled components (LECs) such as deep neural networks (DNNs) for perception and decision making tasks. However, DNNs are typically non-transparent making reasoning about their predictions very difficult, and hence their application to safety-critical systems is very challenging. LECs could be integrated easier into CPS if their predictions could be complemented with a confidence measure that quantifies how much we trust their output. The paper presents an approach for computing confidence bounds based on Inductive Conformal Prediction (ICP). We train a Triplet Network architecture to learn representations of the input data that can be used to estimate the similarity between test examples and examples in the training data set. Then, these representations are used to estimate the confidence of set predictions from a classifier that is based on the neural network architecture used in the triplet. The approach is evaluated using a robotic navigation benchmark and the results show that we can computed trusted confidence bounds efficiently in real-time.

2021-10-04
Das, Debashis, Banerjee, Sourav, Mansoor, Wathiq, Biswas, Utpal, Chatterjee, Pushpita, Ghosh, Uttam.  2020.  Design of a Secure Blockchain-Based Smart IoV Architecture. 2020 3rd International Conference on Signal Processing and Information Security (ICSPIS). :1–4.
Blockchain is developing rapidly in various domains for its security. Nowadays, one of the most crucial fundamental concerns is internet security. Blockchain is a novel solution to enhance the security of network applications. However, there are no precise frameworks to secure the Internet of Vehicle (IoV) using Blockchain technology. In this paper, a blockchain-based smart internet of vehicle (BSIoV) framework has been proposed due to the cooperative, collaborative, transparent, and secure characteristics of Blockchain. The main contribution of the proposed work is to connect vehicle-related authorities together to fix a secure and transparent vehicle-to-everything (V2X) communication through the peer-to-peer network connection and provide secure services to the intelligent transport systems. A key management strategy has been included to identify a vehicle in this proposed system. The proposed framework can also provide a significant solution for the data security and safety of the connected vehicles in blockchain network.
2021-07-07
Antevski, Kiril, Groshev, Milan, Baldoni, Gabriele, Bernardos, Carlos J..  2020.  DLT federation for Edge robotics. 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :71–76.
The concept of federation in 5G and NFV networks aims to provide orchestration of services across multiple administrative domains. Edge robotics, as a field of robotics, implements the robot control on the network edge by relying on low-latency and reliable access connectivity. In this paper, we propose a solution that enables Edge robotics service to expand its service footprint or access coverage over multiple administrative domains. We propose application of Distributed ledger technologies (DLTs) for the federation procedures to enable private, secure and trusty interactions between undisclosed administrative domains. The solution is applied on a real-case Edge robotics experimental scenario. The results show that it takes around 19 seconds to deploy & federate a Edge robotics service in an external/anonymous domain without any service down-time.
2021-07-02
Braeken, An, Porambage, Pawani, Puvaneswaran, Amirthan, Liyanage, Madhusanka.  2020.  ESSMAR: Edge Supportive Secure Mobile Augmented Reality Architecture for Healthcare. 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech). :1—7.
The recent advances in mobile devices and wireless communication sector transformed Mobile Augmented Reality (MAR) from science fiction to reality. Among the other MAR use cases, the incorporation of this MAR technology in the healthcare sector can elevate the quality of diagnosis and treatment for the patients. However, due to the highly sensitive nature of the data available in this process, it is also highly vulnerable to all types of security threats. In this paper, an edge-based secure architecture is presented for a MAR healthcare application. Based on the ESSMAR architecture, a secure key management scheme is proposed for both the registration and authentication phases. Then the security of the proposed scheme is validated using formal and informal verification methods.
2021-07-27
Bao, Zhida, Zhao, Haojun.  2020.  Evaluation of Adversarial Attacks Based on DL in Communication Networks. 2020 7th International Conference on Dependable Systems and Their Applications (DSA). :251–252.
Deep Neural Networks (DNN) have strong capabilities of memories, feature identifications and automatic analyses, solving various complex problems. However, DNN classifiers have obvious fragility that adding several unnoticeable perturbations to the original examples will lead to the errors in the classifier identification. In the field of communications, the adversarial examples will greatly reduce the accuracy of the signal identification, causing great information security risks. Considering the adversarial examples pose a serious threat to the security of the DNN models, studying their generation mechanisms and testing their attack effects are critical to ensuring the information security of the communication networks. This paper will study the generation of the adversarial examples and the influences of the adversarial examples on the accuracy of the DNN-based communication signal identification. Meanwhile, this paper will study the influences of the adversarial examples under the white-box models and black-box models, and explore the adversarial attack influences of the factors such as perturbation levels and iterative steps. The insights of this study would be helpful for ensuring the security of information networks and designing robust DNN communication networks.
2021-09-21
Vurdelja, Igor, Blažić, Ivan, Bojić, Dragan, Drašković, Dražen.  2020.  A framework for automated dynamic malware analysis for Linux. 2020 28th Telecommunications Forum (℡FOR). :1–4.
Development of malware protection tools requires a more advanced test environment comparing to safe software. This kind of development includes a safe execution of many malware samples in order to evaluate the protective power of the tool. The host machine needs to be protected from the harmful effects of malware samples and provide a realistic simulation of the execution environment. In this paper, a framework for automated malware analysis on Linux is presented. Different types of malware analysis methods are discussed, as well as the properties of a good framework for dynamic malware analysis.
2022-11-08
HeydariGorji, Ali, Rezaei, Siavash, Torabzadehkashi, Mahdi, Bobarshad, Hossein, Alves, Vladimir, Chou, Pai H..  2020.  HyperTune: Dynamic Hyperparameter Tuning for Efficient Distribution of DNN Training Over Heterogeneous Systems. 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD). :1–8.
Distributed training is a novel approach to accelerating training of Deep Neural Networks (DNN), but common training libraries fall short of addressing the distributed nature of heterogeneous processors or interruption by other workloads on the shared processing nodes. This paper describes distributed training of DNN on computational storage devices (CSD), which are NAND flash-based, high-capacity data storage with internal processing engines. A CSD-based distributed architecture incorporates the advantages of federated learning in terms of performance scalability, resiliency, and data privacy by eliminating the unnecessary data movement between the storage device and the host processor. The paper also describes Stannis, a DNN training framework that improves on the shortcomings of existing distributed training frameworks by dynamically tuning the training hyperparameters in heterogeneous systems to maintain the maximum overall processing speed in term of processed images per second and energy efficiency. Experimental results on image classification training benchmarks show up to 3.1x improvement in performance and 2.45x reduction in energy consumption when using Stannis plus CSD compare to the generic systems.
2021-03-09
Herrera, A. E. Hinojosa, Walshaw, C., Bailey, C..  2020.  Improving Black Box Classification Model Veracity for Electronics Anomaly Detection. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). :1092–1097.
Data driven classification models are useful to assess quality of manufactured electronics. Because decisions are taken based on the models, their veracity is relevant, covering aspects such as accuracy, transparency and clarity. The proposed BB-Stepwise algorithm aims to improve the classification model transparency and accuracy of black box models. K-Nearest Neighbours (KNN) is a black box model which is easy to implement and has achieved good classification performance in different applications. In this paper KNN-Stepwise is illustrated for fault detection of electronics devices. The results achieved shows that the proposed algorithm was able to improve the accuracy, veracity and transparency of KNN models and achieve higher transparency and clarity, and at least similar accuracy than when using Decision Tree models.
2021-11-08
Hörmann, Leander B., Pichler-Scheder, Markus, Kastl, Christian, Bernhard, Hans-Peter, Priller, Peter, Springer, Andreas.  2020.  Location-Based Trustworthiness of Wireless Sensor Nodes Using Optical Localization. 2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM). :1–4.
A continually growing number of sensors is required for monitoring industrial processes and for continuous data acquisition from industrial plants and devices. The cabling of sensors represent a considerable effort and potential source of error, which can be avoided by using wireless sensor nodes. These wireless sensor nodes form a wireless sensor network (WSN) to efficiently transmit data to the destination. For the acceptance of WSNs in industry, it is important to build up networks with high trustworthiness. The trustworthiness of the WSN depends not only on a secure wireless communication but also on the ability to detect modifications at the wireless sensor nodes itself. This paper presents the enhancement of the WSN's trustworthiness using an optical localization system. It can be used for the preparation phase of the WSN and also during operation to track the positions of the wireless sensor nodes and detect spatial modification. The location information of the sensor nodes can also be used to rate their trustworthiness.