Biblio

Found 3153 results

Filters: First Letter Of Last Name is B  [Clear All Filters]
2021-08-17
Langer, Martin, Heine, Kai, Sibold, Dieter, Bermbach, Rainer.  2020.  A Network Time Security Based Automatic Key Management for PTPv2.1. 2020 IEEE 45th Conference on Local Computer Networks (LCN). :144–153.
The PTPv2.1 standard provides new protection mechanisms to ensure the authenticity and integrity of PTP messages. However, the distribution of the necessary security parameters is not part of the specification. This paper proposes a simple and practical approach for the automated distribution of these parameters by using a key management system that enables the Immediate Security Processing in PTP. It is based on the Network Time Security protocol and offers functions for group management, parameter updating and monitoring mechanisms. A Proof-of-Concept implementation provides initial results of the resources required for the key management system and its use.
2021-07-07
Beghdadi, Azeddine, Bezzine, Ismail, Qureshi, Muhammad Ali.  2020.  A Perceptual Quality-driven Video Surveillance System. 2020 IEEE 23rd International Multitopic Conference (INMIC). :1–6.
Video-based surveillance systems often suffer from poor-quality video in an uncontrolled environment. This may strongly affect the performance of high-level tasks such as visual tracking, abnormal event detection or more generally scene understanding and interpretation. This work aims to demonstrate the impact and the importance of video quality in video surveillance systems. Here, we focus on the most important challenges and difficulties related to the perceptual quality of the acquired or transmitted images/videos in uncontrolled environments. In this paper, we propose an architecture of a smart surveillance system that incorporates the perceptual quality of acquired scenes. We study the behaviour of some state-of-the-art video quality metrics on some original and distorted sequences from a dedicated surveillance dataset. Through this study, it has been shown that some of the state-of-the-art image/video quality metrics do not work in the context of video-surveillance. This study opens a new research direction to develop the video quality metrics in the context of video surveillance and also to propose a new quality-driven framework of video surveillance system.
2021-05-25
Bakhtiyor, Abdurakhimov, Zarif, Khudoykulov, Orif, Allanov, Ilkhom, Boykuziev.  2020.  Algebraic Cryptanalysis of O'zDSt 1105:2009 Encryption Algorithm. 2020 International Conference on Information Science and Communications Technologies (ICISCT). :1—7.
In this paper, we examine algebraic attacks on the O'zDSt 1105:2009. We begin with a brief review of the meaning of algebraic cryptanalysis, followed by an algebraic cryptanalysis of O'zDSt 1105:2009. Primarily O'zDSt 1105:2009 encryption algorithm is decomposed and each transformation in it is algebraic described separately. Then input and output of each transformation are expressed with other transformation, encryption key, plaintext and cipher text. Created equations, unknowns on it and degree of unknowns are analyzed, and then overall result is given. Based on experimental results, it is impossible to save all system of equations that describes all transformations in O'zDSt 1105:2009 standard. Because, this task requires 273 bytes for the second round. For this reason, it is advisable to evaluate the parameters of the system of algebraic equations, representing the O'zDSt 1105:2009 standard, theoretically.
2021-01-25
Oesch, S., Bridges, R., Smith, J., Beaver, J., Goodall, J., Huffer, K., Miles, C., Scofield, D..  2020.  An Assessment of the Usability of Machine Learning Based Tools for the Security Operations Center. 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :634—641.

Gartner, a large research and advisory company, anticipates that by 2024 80% of security operation centers (SOCs) will use machine learning (ML) based solutions to enhance their operations.11https://www.ciodive.com/news/how-data-science-tools-can-lighten-the-load-for-cybersecurity-teams/572209/ In light of such widespread adoption, it is vital for the research community to identify and address usability concerns. This work presents the results of the first in situ usability assessment of ML-based tools. With the support of the US Navy, we leveraged the national cyber range-a large, air-gapped cyber testbed equipped with state-of-the-art network and user emulation capabilities-to study six US Naval SOC analysts' usage of two tools. Our analysis identified several serious usability issues, including multiple violations of established usability heuristics for user interface design. We also discovered that analysts lacked a clear mental model of how these tools generate scores, resulting in mistrust \$a\$ and/or misuse of the tools themselves. Surprisingly, we found no correlation between analysts' level of education or years of experience and their performance with either tool, suggesting that other factors such as prior background knowledge or personality play a significant role in ML-based tool usage. Our findings demonstrate that ML-based security tool vendors must put a renewed focus on working with analysts, both experienced and inexperienced, to ensure that their systems are usable and useful in real-world security operations settings.

2021-01-28
Bhattacharya, A., Ramachandran, T., Banik, S., Dowling, C. P., Bopardikar, S. D..  2020.  Automated Adversary Emulation for Cyber-Physical Systems via Reinforcement Learning. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1—6.

Adversary emulation is an offensive exercise that provides a comprehensive assessment of a system’s resilience against cyber attacks. However, adversary emulation is typically a manual process, making it costly and hard to deploy in cyber-physical systems (CPS) with complex dynamics, vulnerabilities, and operational uncertainties. In this paper, we develop an automated, domain-aware approach to adversary emulation for CPS. We formulate a Markov Decision Process (MDP) model to determine an optimal attack sequence over a hybrid attack graph with cyber (discrete) and physical (continuous) components and related physical dynamics. We apply model-based and model-free reinforcement learning (RL) methods to solve the discrete-continuous MDP in a tractable fashion. As a baseline, we also develop a greedy attack algorithm and compare it with the RL procedures. We summarize our findings through a numerical study on sensor deception attacks in buildings to compare the performance and solution quality of the proposed algorithms.

2021-05-05
Kishore, Pushkar, Barisal, Swadhin Kumar, Prasad Mohapatra, Durga.  2020.  JavaScript malware behaviour analysis and detection using sandbox assisted ensemble model. 2020 IEEE REGION 10 CONFERENCE (TENCON). :864—869.

Whenever any internet user visits a website, a scripting language runs in the background known as JavaScript. The embedding of malicious activities within the script poses a great threat to the cyberworld. Attackers take advantage of the dynamic nature of the JavaScript and embed malicious code within the website to download malware and damage the host. JavaScript developers obfuscate the script to keep it shielded from getting detected by the malware detectors. In this paper, we propose a novel technique for analysing and detecting JavaScript using sandbox assisted ensemble model. We extract the payload using malware-jail sandbox to get the real script. Upon getting the extracted script, we analyse it to define the features that are needed for creating the dataset. We compute Pearson's r between every feature for feature extraction. An ensemble model consisting of Sequential Minimal Optimization (SMO), Voted Perceptron and AdaBoost algorithm is used with voting technique to detect malicious JavaScript. Experimental results show that our proposed model can detect obfuscated and de-obfuscated malicious JavaScript with an accuracy of 99.6% and 0.03s detection time. Our model performs better than other state-of-the-art models in terms of accuracy and least training and detection time.

2021-03-15
Silitonga, A., Gassoumi, H., Becker, J..  2020.  MiteS: Software-based Microarchitectural Attacks and Countermeasures in networked AP SoC Platforms. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :65—71.

The impact of microarchitectural attacks in Personal Computers (PCs) can be further adapted to and observed in internetworked All Programmable System-on-Chip (AP SoC) platforms. This effort involves the access control or execution of Intellectual Property cores in the FPGA of an AP SoC Victim internetworked with an AP SoC Attacker via Internet Protocol (IP). Three conceptions of attacks were implemented: buffer overflow attack at the stack, return-oriented programming attack, and command-injection-based attack for dynamic reconfiguration in the FPGA. Indeed, a specific preventive countermeasure for each attack is proposed. The functionality of the countermeasures mainly comprises adapted words addition (stack protection) for the first and second attacks and multiple encryption for the third attack. In conclusion, the recommended countermeasures are realizable to counteract the implemented attacks.

2021-08-17
Monakhov, Yuri, Kuznetsova, Anna, Monakhov, Mikhail, Telny, Andrey, Bednyatsky, Ilya.  2020.  Performance Evaluation of the Modified HTB Algorithm. 2020 Dynamics of Systems, Mechanisms and Machines (Dynamics). :1—5.
In this article, authors present the results of testing the modified HTB traffic control algorithm in an experimental setup. The algorithm is implemented as a Linux kernel module. An analysis of the experimental results revealed the effect of uneven packet loss in priority classes. In the second part of the article, the authors propose a solution to this problem by applying a distribution scheme for the excess of tokens, according to which excess class tokens are given to the leaf with the highest priority. The new modification of the algorithm was simulated in the AnyLogic environment. The results of an experimental study demonstrated that dividing the excess tokens of the parent class between daughter classes is less effective in terms of network performance than allocating the excess tokens to a high-priority class during the competition for tokens between classes. In general, a modification of the HTB algorithm that implements the proposed token surplus distribution scheme yields more consistent delay times for the high-priority class.
2021-08-02
Bezzine, Ismail, Khan, Zohaib Amjad, Beghdadi, Azeddine, Al-Maadeed, Noor, Kaaniche, Mounir, Al-Maadeed, Somaya, Bouridane, Ahmed, Cheikh, Faouzi Alaya.  2020.  Video Quality Assessment Dataset for Smart Public Security Systems. 2020 IEEE 23rd International Multitopic Conference (INMIC). :1—5.
Security and monitoring systems are more and more demanding in terms of quality, reliability and flexibility especially those dedicated to video surveillance. The quality of the acquired video signal strongly affects the performance of the high level tasks such as visual tracking, face detection and recognition. The design of a video quality assessment metric dedicated to this particular application requires a preliminary study on the common distortions encountered in video surveillance. To this end, we present in this paper a dataset dedicated to video quality assessment in the context of video surveillance. This database consists of a set of common distortions at different levels of annoyance. The subjective tests are performed using a classical pair comparison protocol with some new configurations. The subjective results obtained through the psycho-visual tests are analyzed and compared to some objective video quality assessment metrics. The preliminary results are encouraging and open a new framework for building smart video surveillance based security systems.
2021-09-01
Barinov, Andrey, Beschastnov, Semen, Boger, Alexander, Kolpakov, Alexey, Ufimtcev, Maxim.  2020.  Virtual Environment for Researching Information Security of a Distributed ICS. 2020 Global Smart Industry Conference (GloSIC). :348—353.
Nowadays, industrial control systems are increasingly subject to cyber-attacks. In this regard, the relevance of ICS modeling for security research and for teaching employees the basics of information security is increasing. Most of the existing testbeds for research on information security of industrial control systems are software and hardware solutions that contain elements of industrial equipment. However, when implementing distance-learning programs, it is not possible to fully use such testbeds. This paper describes the approach of complete virtualization of technological processes in ICS based on the open source programmable logic controller OpenPLC. This enables a complete information security training from any device with Internet access. A unique feature of this stand is also the support of several PLCs and a lower-level subsystem implemented by a distributed I/O system. The study describes the implementation scheme of the stand, and several case of reproduction of attacks. Scaling approaches for this solution are also considered.
2021-02-15
Liang, Y., Bai, L., Shao, J., Cheng, Y..  2020.  Application of Tensor Decomposition Methods In Eddy Current Pulsed Thermography Sequences Processing. 2020 International Conference on Sensing, Measurement Data Analytics in the era of Artificial Intelligence (ICSMD). :401–406.
Eddy Current Pulsed Thermography (ECPT) is widely used in Nondestructive Testing (NDT) of metal defects where the defect information is sometimes affected by coil noise and edge noise, therefore, it is necessary to segment the ECPT image sequences to improve the detection effect, that is, segmenting the defect part from the background. At present, the methods widely used in ECPT are mostly based on matrix decomposition theory. In fact, tensor decomposition is a new hotspot in the field of image segmentation and has been widely used in many image segmentation scenes, but it is not a general method in ECPT. This paper analyzes the feasibility of the usage of tensor decomposition in ECPT and designs several experiments on different samples to verify the effects of two popular tensor decomposition algorithms in ECPT. This paper also compares the matrix decomposition methods and the tensor decomposition methods in terms of treatment effect, time cost, detection success rate, etc. Through the experimental results, this paper points out the advantages and disadvantages of tensor decomposition methods in ECPT and analyzes the suitable engineering application scenarios of tensor decomposition in ECPT.
2021-06-28
Lee, Hyunjun, Bere, Gomanth, Kim, Kyungtak, Ochoa, Justin J., Park, Joung-hu, Kim, Taesic.  2020.  Deep Learning-Based False Sensor Data Detection for Battery Energy Storage Systems. 2020 IEEE CyberPELS (CyberPELS). :1–6.
Battery energy storage systems are facing risks of unreliable battery sensor data which might be caused by sensor faults in an embedded battery management system, communication failures, and even cyber-attacks. It is crucial to evaluate the trustworthiness of battery sensor data since inaccurate sensor data could lead to not only serious damages to battery energy storage systems, but also threaten the overall reliability of their applications (e.g., electric vehicles or power grids). This paper introduces a battery sensor data trust framework enabling detecting unreliable data using a deep learning algorithm. The proposed sensor data trust mechanism could potentially improve safety and reliability of the battery energy storage systems. The proposed deep learning-based battery sensor fault detection algorithm is validated by simulation studies using a convolutional neural network.
2021-02-10
Banerjee, R., Baksi, A., Singh, N., Bishnu, S. K..  2020.  Detection of XSS in web applications using Machine Learning Classifiers. 2020 4th International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech). :1—5.
Considering the amount of time we spend on the internet, web pages have evolved over a period of time with rapid progression and momentum. With such advancement, we find ourselves fronting a few hostile ideologies, breaching the security levels of webpages as such. The most hazardous of them all is XSS, known as Cross-Site Scripting, is one of the attacks which frequently occur in website-based applications. Cross-Site Scripting (XSS) attacks happen when malicious data enters a web application through an untrusted source. The spam attacks happen in the form of Wall posts, News feed, Message spam and mostly when a user is open to download content of webpages. This paper investigates the use of machine learning to build classifiers to allow the detection of XSS. Establishing our approach, we target the detection modus operandi of XSS attack via two features: URLs and JavaScript. To predict the level of XSS threat, we will be using four machine learning algorithms (SVM, KNN, Random forest and Logistic Regression). Proposing these classified algorithms, webpages will be branded as malicious or benign. After assessing and calculating the dataset features, we concluded that the Random Forest Classifier performed most accurately with the lowest False Positive Rate of 0.34. This precision will ensure a method much efficient to evaluate threatening XSS for the smooth functioning of the system.
2021-09-16
Beg, Omar Ali, Yadav, Ajay P., Johnson, Taylor T., Davoudi, Ali.  2020.  Formal Online Resiliency Monitoring in Microgrids. 2020 Resilience Week (RWS). :99–105.
This work adopts an online resiliency monitoring framework employing metric temporal logic (MTL) under cyber-physical anomalies, namely false-data injection attacks, denial-of-service attacks, and physical faults. Such anomalies adversely affect the frequency synchronization, load sharing, and voltage regulation in microgrids. MTL formalism is adopted to monitor the outputs of inverters/converters against operational bounds, detect and quantify cyber-physical anomalies, monitor the microgrid's resiliency during runtime, and compare mitigation strategies. Since the proposed framework does not require system knowledge, it can be deployed on a complex microgrid. This is verified using an IEEE 34-bus feeder system and a DC microgrid cluster in a controller/hardware-in-the-loop environment.
2021-11-29
Bespalov, Yuri, Nelasa, Hanna, Kovalchuk, Lyudmila, Oliynykov, Roman.  2020.  On Generation of Cycles, Chains and Graphs of Pairing-Friendly Elliptic Curves. 2020 IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S T). :137–141.
We study the problem of generation of cycles, chains and graphs of pairing-friendly elliptic curves using in succinct non-interactive arguments for knowledge protocols in blockchain. The task to build a “stick” for existing MNT753 cycle is reduced to the factorization problem for big numbers. Together with graphs of pairing friendly elliptic curves we consider auxiliary graphs of their orders (primes or irreducible polynomials) associated to vertices and embedding degrees to edges. Numerical experiments allow us to conjecture that (except of MNT case): 1) for any fixed embedding degrees there exist only finite number of such cycles and, hence, there are no families of such cycles; 2) chains of prime order are very rare; we suppose that there are no polynomial families of such chains. It is hard to find a family of pairing friendly elliptic curves with the base field order q(x) such that ζk ∈ Q[x]/(q(x)) for k \textbackslashtextgreater 6. From other hand our examples show that we can apply Brezing-Weng construction with k=6 and D=3 iteratively to obtain chains of length 3-4. We build 1) a family of 1-chains with embedding degrees 8 and 7, where all orders are given by cyclotomic polynomials; 2) a combination of MNT cycle and near-MNT curve.
2021-03-15
Khuchit, U., Wu, L., Zhang, X., Yin, Y., Batsukh, A., Mongolyn, B., Chinbat, M..  2020.  Hardware Design of Polynomial Multiplication for Byte-Level Ring-LWE Based Cryptosystem. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :86–89.
An ideal lattice is defined over a ring learning with errors (Ring-LWE) problem. Polynomial multiplication over the ring is the most computational and time-consuming block in lattice-based cryptography. This paper presents the first hardware design of the polynomial multiplication for LAC, one of the Round-2 candidates of the NIST PQC Standardization Process, which has byte-level modulus p=251. The proposed architecture supports polynomial multiplications for different degree n (n=512/1024/2048). For designing the scheme, we used the Vivado HLS compiler, a high-level synthesis based hardware design methodology, which is able to optimize software algorithms into actual hardware products. The design of the scheme takes 274/280/291 FFs and 204/217/208 LUTs on the Xilinx Artix-7 family FPGA, requested by NIST PQC competition for hardware implementation. Multiplication core uses only 1/1/2 pieces of 18Kb BRAMs, 1/1/1 DSPs, and 90/94/95 slices on the board. Our timing result achieved in an alternative degree n with 5.052/4.3985/5.133ns.
2021-03-29
Gupta, S., Buduru, A. B., Kumaraguru, P..  2020.  imdpGAN: Generating Private and Specific Data with Generative Adversarial Networks. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :64–72.
Generative Adversarial Network (GAN) and its variants have shown promising results in generating synthetic data. However, the issues with GANs are: (i) the learning happens around the training samples and the model often ends up remembering them, consequently, compromising the privacy of individual samples - this becomes a major concern when GANs are applied to training data including personally identifiable information, (ii) the randomness in generated data - there is no control over the specificity of generated samples. To address these issues, we propose imdpGAN-an information maximizing differentially private Generative Adversarial Network. It is an end-to-end framework that simultaneously achieves privacy protection and learns latent representations. With experiments on MNIST dataset, we show that imdpGAN preserves the privacy of the individual data point, and learns latent codes to control the specificity of the generated samples. We perform binary classification on digit pairs to show the utility versus privacy trade-off. The classification accuracy decreases as we increase privacy levels in the framework. We also experimentally show that the training process of imdpGAN is stable but experience a 10-fold time increase as compared with other GAN frameworks. Finally, we extend imdpGAN framework to CelebA dataset to show how the privacy and learned representations can be used to control the specificity of the output.
2021-11-08
Khan, Ammar, Blair, Nicholas, Farnell, Chris, Mantooth, H. Alan.  2020.  Integrating Trusted Platform Modules in Power Electronics. 2020 IEEE CyberPELS (CyberPELS). :1–5.
Trusted Platform Modules (TPMs) are specialized chips that store RSA keys specific to the host system for hardware authentication. The RSA keys refer to an encryption technology developed by RSA Data Security. The RSA algorithm accounts for the fact that there is no efficient way to factor extremely large numbers. Each TPM chip contains an RSA Key pair known as the Endorsement Key that cannot be accessed by software. The TPM contains an additional key, called the Attestation Identity Key that protects the device itself against unauthorized firmware and software modification by implementing hash functions on critical sections of the software and firmware before execution. As a result, the TPM can be used as a chip for handling encryption for a larger system to offer an additional layer of security. Furthermore, the TPM can also be used for managing encryption keys, as a Storage Root Key is created when a user or administrator takes ownership of the system. However, merging the TPM into a system does come with additional costs along with potential benefits. This paper focuses on integrating a TPM into a system implemented on an ARM processor that engages with power electronics, and then presents the security benefits associated with a TPM.
2021-09-21
Khan, Mamoona, Baig, Duaa, Khan, Usman Shahid, Karim, Ahmad.  2020.  Malware Classification Framework Using Convolutional Neural Network. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1–7.
Cyber-security is facing a huge threat from malware and malware mass production due to its mutation factors. Classification of malware by their features is necessary for the security of information technology (IT) society. To provide security from malware, deep neural networks (DNN) can offer a superior solution for the detection and categorization of malware samples by using image classification techniques. To strengthen our ideology of malware classification through image recognition, we have experimented by comparing two perspectives of malware classification. The first perspective implements dense neural networks on binary files and the other applies deep layered convolutional neural network on malware images. The proposed model is trained to a set of malware samples, which are further distributed into 9 different families. The dataset of malware samples which is used in this paper is provided by Microsoft for Microsoft Malware Classification Challenge in 2015. The proposed model shows an accuracy of 97.80% on the provided dataset. By using the proposed model optimum classifications results can be attained.
2022-10-13
Barlow, Luke, Bendiab, Gueltoum, Shiaeles, Stavros, Savage, Nick.  2020.  A Novel Approach to Detect Phishing Attacks using Binary Visualisation and Machine Learning. 2020 IEEE World Congress on Services (SERVICES). :177—182.
Protecting and preventing sensitive data from being used inappropriately has become a challenging task. Even a small mistake in securing data can be exploited by phishing attacks to release private information such as passwords or financial information to a malicious actor. Phishing has now proven so successful, it is the number one attack vector. Many approaches have been proposed to protect against this type of cyber-attack, from additional staff training, enriched spam filters to large collaborative databases of known threats such as PhishTank and OpenPhish. However, they mostly rely upon a user falling victim to an attack and manually adding this new threat to the shared pool, which presents a constant disadvantage in the fight back against phishing. In this paper, we propose a novel approach to protect against phishing attacks using binary visualisation and machine learning. Unlike previous work in this field, our approach uses an automated detection process and requires no further user interaction, which allows faster and more accurate detection process. The experiment results show that our approach has high detection rate.
2021-01-28
Romashchenko, V., Brutscheck, M., Chmielewski, I..  2020.  Organisation and Implementation of ResNet Face Recognition Architectures in the Environment of Zigbee-based Data Transmission Protocol. 2020 Fourth International Conference on Multimedia Computing, Networking and Applications (MCNA). :25—30.

This paper describes a realisation of a ResNet face recognition method through Zigbee-based wireless protocol. The system uses a CC2530 Zigbee-based radio frequency chip with connected VC0706 camera on it. The Arduino Nano had been used for organisation of data compression and effective division of Zigbee packets. The proposed solution also simplifies a data transmission within a strict bandwidth of Zigbee protocol and reliable packet forwarding in case of frequency distortion. The following investigation model uses Raspberry Pi 3 with connected Zigbee End Device (ZED) for successful receiving of important images and acceleration of deep learning interfaces. The model is integrated into a smart security system based on Zigbee modules, MySQL database, Android application and works in the background by using daemons procedures. To protect data, all wireless connections had been encrypted by the 128-bit Advanced Encryption Standard (AES-128) algorithm. Experimental results show a possibility to implement complex systems under restricted requirements of available transmission protocols.

2021-07-27
MacDermott, Áine, Carr, John, Shi, Qi, Baharon, Mohd Rizuan, Lee, Gyu Myoung.  2020.  Privacy Preserving Issues in the Dynamic Internet of Things (IoT). 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
Convergence of critical infrastructure and data, including government and enterprise, to the dynamic Internet of Things (IoT) environment and future digital ecosystems exhibit significant challenges for privacy and identity in these interconnected domains. There are an increasing variety of devices and technologies being introduced, rendering existing security tools inadequate to deal with the dynamic scale and varying actors. The IoT is increasingly data driven with user sovereignty being essential - and actors in varying scenarios including user/customer, device, manufacturer, third party processor, etc. Therefore, flexible frameworks and diverse security requirements for such sensitive environments are needed to secure identities and authenticate IoT devices and their data, protecting privacy and integrity. In this paper we present a review of the principles, techniques and algorithms that can be adapted from other distributed computing paradigms. Said review will be used in application to the development of a collaborative decision-making framework for heterogeneous entities in a distributed domain, whilst simultaneously highlighting privacy preserving issues in the IoT. In addition, we present our trust-based privacy preserving schema using Dempster-Shafer theory of evidence. While still in its infancy, this application could help maintain a level of privacy and nonrepudiation in collaborative environments such as the IoT.
2022-11-08
Boo, Yoonho, Shin, Sungho, Sung, Wonyong.  2020.  Quantized Neural Networks: Characterization and Holistic Optimization. 2020 IEEE Workshop on Signal Processing Systems (SiPS). :1–6.
Quantized deep neural networks (QDNNs) are necessary for low-power, high throughput, and embedded applications. Previous studies mostly focused on developing optimization methods for the quantization of given models. However, quantization sensitivity depends on the model architecture. Also, the characteristics of weight and activation quantization are quite different. This study proposes a holistic approach for the optimization of QDNNs, which contains QDNN training methods as well as quantization-friendly architecture design. Synthesized data is used to visualize the effects of weight and activation quantization. The results indicate that deeper models are more prone to activation quantization, while wider models improve the resiliency to both weight and activation quantization.
2020-12-21
Bediya, A. K., Kumar, R..  2020.  Real Time DDoS Intrusion Detection and Monitoring Framework in 6LoWPAN for Internet of Things. 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON). :824–828.
The Internet of things is an extremely enormous space and still, IoT is spreading over a wide range of zones of development with very fast speed. The IoT is going to create a new world of efficient services. IoT is a collective system consisting of hardware like sensors, Radio Frequency Identification RFID, Bluetooth devices, Near Field Communication (NFC) devices, etc. and software that provides data queries, exchange, repository and exchanges, etc. Security of the IoT network is also a big and important issue of concern. This paper reviews the DDoS attack impact on IoT network and its mitigation methods for IoT in network, also discusses CoAP protocol, RPL protocol and 6LoWPAN network. This paper also represents the security framework to detect and monitor the DDoS attack for low power devices based IoT network.
2022-06-06
Corraro, Gianluca, Bove, Ezio, Canzolino, Pasquale, Cicala, Marco, Ciniglio, Umberto, Corraro, Federico, Di Capua, Gianluigi, Filippone, Edoardo, Garbarino, Luca, Genito, Nicola et al..  2020.  Real-Time HW and Human-in-the-Loop Simulations for the Validation of Detect and Avoid Advanced Functionalities in ATM Future Scenarios. 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). :1–10.
The full integration of Remotely Piloted Aircraft Systems (RPAS) in non-segregated airspace is one of the major objectives for the worldwide aviation organizations and authorities. However, there are several technological and regulatory issues due to the increase of the air traffic in the next years and to the need of keeping high safety levels. In this framework, a real-time validation environment capable to simulate complex scenarios related to future air traffic management (ATM) conditions is of paramount importance. These facilities allow detailed testing and tuning of new technologies and procedures before executing flight tests. With such motivations, the Italian Aerospace Research Centre has developed the Integrated Simulation Facility (ISF) able to accurately reproduce ATM complex scenarios in real-time with hardware and human in-the-loop simulations, aiming to validate new ATM procedures and innovative system prototypes for RPAS and General Aviation aircraft. In the present work, the ISF facility has been used for reproducing relevant ATM scenarios to validate the functionalities of a Detect and Avoid system (DAA). The results of the ISF test campaign demonstrate the effectiveness of the developed algorithm in the autonomous resolution of mid-air collisions in presence of both air traffic and fixed obstacles (i.e. bad weather areas, no-fly-zone and terrain) and during critical flight phases, thus exceeding the current DAA state-of-the-art.