Biblio
The age of the wireless network already advances to the fifth generation (5G) era. With software-defined networking (SDN) and network function virtualization (NFV), various scenarios can be implemented in the 5G network. Cloud computing, for example, is one of the important application scenarios for implementing SDN/NFV solutions. The emerging container technologies, such as Docker, can provide more agile service provisioning than virtual machines can do in cloud environments. It is a trend that virtual network functions (VNFs) tend to be deployed in the form of containers. The services provided by clouds can be formed by service function chaining (SFC) consisting of containerized VNFs. Nevertheless, the challenges and limitation regarding SFCs are reported in the literature. Various network services are bound to rely heavily on these novel technologies, however, the development of related technologies often emphasizes functions and ignores security issues. One noticeable issue is the SFC integrity. In brief, SFC integrity concerns whether the paths that traffic flows really pass by and the ones of service chains that are predefined are consistent. In order to examine SFC integrity in the cloud-native environment of 5G network, we propose a framework that can be integrated with NFV management and orchestration (MANO) in this work. The core of this framework is the anomaly detection mechanism for SFC integrity. The learning algorithm of our mechanism is based on extreme learning machine (ELM). The proposed mechanism is evaluated by its performance such as the accuracy of our ELM model. This paper concludes with discussions and future research work.
Recently, Future Internet research has attracted enormous attentions towards the design of clean slate Future Internet Architecture. A large number of research projects has been established by National Science Foundation's (NSF), Future Internet Architecture (FIA) program in this area. One of these projects is MobilityFirst, which recognizes the predominance of mobile networking and aims to address the challenges of this paradigm shift. Future Internet Architecture Projects, are usually deploying on large scale experimental networks for testing and evaluating the properties of new architecture and protocols. Currently only some specific experiments, like routing and name resolution scalability in MobilityFirst architecture has been performed over the ORBIT and GENI platforms. However, to move from this experimental networking to technology trials with real-world users and applications deployment of alternative testbeds are necessary. In this paper, MobilityFirst Future Internet testbed is designed and deployed on Future Networks Laboratory, University of Science and Technology of China, China. Which provides a realistic environment for MobilityFirst experiments. Next, in this paper, for MF traffic transmission between MobilityFirst networks through current networking protocols (TCP), MobilityFirst Proxies are designed and implemented. Furthermore, the results and experience obtained from experiments over proposed testbed are presented.
We propose a high efficiency Early-Complete Brute Force Elimination method that speeds up the analysis flow of the Camouflage Integrated Circuit (IC). The proposed method is targeted for security qualification of the Camouflaged IC netlists in Intellectual Property (IP) protection. There are two main features in the proposed method. First, the proposed method features immediate elimination of the incorrect Camouflage gates combination for the rest of computation, concentrating the resources into other potential correct Camouflage gates combination. Second, the proposed method features early complete, i.e. revealing the correct Camouflage gates once all incorrect gates combination are eliminated, increasing the computation speed for the overall security analysis. Based on the Python programming platform, we implement the algorithm of the proposed method and test it for three circuits including ISCAS’89 benchmarks. From the simulation results, our proposed method, on average, features 71% lesser number of trials and 79% shorter run time as compared to the conventional method in revealing the correct Camouflage gates from the Camouflaged IC netlist.