Biblio

Found 951 results

Filters: First Letter Of Last Name is E  [Clear All Filters]
2020-10-06
Kalwar, Abhishek, Bhuyan, Monowar H., Bhattacharyya, Dhruba K., Kadobayashi, Youki, Elmroth, Erik, Kalita, Jugal K..  2019.  TVis: A Light-weight Traffic Visualization System for DDoS Detection. 2019 14th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP). :1—6.

With rapid growth of network size and complexity, network defenders are facing more challenges in protecting networked computers and other devices from acute attacks. Traffic visualization is an essential element in an anomaly detection system for visual observations and detection of distributed DoS attacks. This paper presents an interactive visualization system called TVis, proposed to detect both low-rate and highrate DDoS attacks using Heron's triangle-area mapping. TVis allows network defenders to identify and investigate anomalies in internal and external network traffic at both online and offline modes. We model the network traffic as an undirected graph and compute triangle-area map based on incidences at each vertex for each 5 seconds time window. The system triggers an alarm iff the system finds an area of the mapped triangle beyond the dynamic threshold. TVis performs well for both low-rate and high-rate DDoS detection in comparison to its competitors.

2020-04-06
Ahmadi, S. Sareh, Rashad, Sherif, Elgazzar, Heba.  2019.  Machine Learning Models for Activity Recognition and Authentication of Smartphone Users. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0561–0567.
Technological advancements have made smartphones to provide wide range of applications that enable users to perform many of their tasks easily and conveniently, anytime and anywhere. For this reason, many users are tend to store their private data in their smart phones. Since conventional methods for security of smartphones, such as passwords, personal identification numbers, and pattern locks are prone to many attacks, this research paper proposes a novel method for authenticating smartphone users based on performing seven different daily physical activity as behavioral biometrics, using smartphone embedded sensor data. This authentication scheme builds a machine learning model which recognizes users by performing those daily activities. Experimental results demonstrate the effectiveness of the proposed framework.
2020-03-23
Alaoui, Sadek Belamfedel, El Houssaine, Tissir, Noreddine, Chaibi.  2019.  Modelling, analysis and design of active queue management to mitigate the effect of denial of service attack in wired/wireless network. 2019 International Conference on Wireless Networks and Mobile Communications (WINCOM). :1–7.
Mitigating the effect of Distributed Denial of Service (DDoS) attacks in wired/wireless networks is a problem of extreme importance. The present paper investigates this problem and proposes a secure AQM to encounter the effects of DDoS attacks on queue's router. The employed method relies on modelling the TCP/AQM system subjected to different DoS attack rate where the resulting closed-loop system is expressed as new Markovian Jump Linear System (MJLS). Sufficient delay-dependent conditions which guarantee the syntheses of a stabilizing control for the closed-loop system with a guaranteed cost J* are derived. Finally, a numerical example is displayed.
2020-08-03
POLAT, Hüseyin, POLAT, Onur, SÖĞÜT, Esra, ERDEM, O. Ayhan.  2019.  Performance Analysis of Between Software Defined Wireless Network and Mobile Ad Hoc Network Under DoS Attack. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). :1–5.

The traditional network used today is unable to meet the increasing needs of technology in terms of management, scaling, and performance criteria. Major developments in information and communication technologies show that the traditional network structure is quite lacking in meeting the current requirements. In order to solve these problems, Software Defined Network (SDN) is capable of responding as it, is flexible, easier to manage and offers a new structure. Software Defined Networks have many advantages over traditional network structure. However, it also brings along many security threats due to its new architecture. For example, the DoS attack, which overloads the controller's processing and communication capacity in the SDN structure, is a significant threat. Mobile Ad Hoc Network (MANET), which is one of the wireless network technologies, is different from SDN technology. MANET is exposed to various attacks such as DoS due to its security vulnerabilities. The aim of the study is to reveal the security problems in SDN structure presented with a new understanding. This is based on the currently used network structures such as MANET. The study consists of two parts. First, DoS attacks against the SDN controller were performed. Different SDN controllers were used for more accurate results. Second, MANET was established and DoS attacks against this network were performed. Different MANET routing protocols were used for more accurate results. According to the scenario, attacks were performed and the performance values of the networks were tested. The reason for using two different networks in this study is to compare the performance values of these networks at the time of attack. According to the test results, both networks were adversely affected by the attacks. It was observed that network performance decreased in MANET structure but there was no network interruption. The SDN controller becomes dysfunctional and collapses as a result of the attack. While the innovations offered by the SDN structure are expected to provide solutions to many problems in traditional networks, there are still many vulnerabilities for network security.

2020-10-12
Brenner, Bernhard, Weippl, Edgar, Ekelhart, Andreas.  2019.  Security Related Technical Debt in the Cyber-Physical Production Systems Engineering Process. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:3012–3017.

Technical debt is an analogy introduced in 1992 by Cunningham to help explain how intentional decisions not to follow a gold standard or best practice in order to save time or effort during creation of software can later on lead to a product of lower quality in terms of product quality itself, reliability, maintainability or extensibility. Little work has been done so far that applies this analogy to cyber physical (production) systems (CP(P)S). Also there is only little work that uses this analogy for security related issues. This work aims to fill this gap: We want to find out which security related symptoms within the field of cyber physical production systems can be traced back to TD items during all phases, from requirements and design down to maintenance and operation. This work shall support experts from the field by being a first step in exploring the relationship between not following security best practices and concrete increase of costs due to TD as consequence.

2020-03-12
Lafram, Ichrak, Berbiche, Naoual, El Alami, Jamila.  2019.  Artificial Neural Networks Optimized with Unsupervised Clustering for IDS Classification. 2019 1st International Conference on Smart Systems and Data Science (ICSSD). :1–7.

Information systems are becoming more and more complex and closely linked. These systems are encountering an enormous amount of nefarious traffic while ensuring real - time connectivity. Therefore, a defense method needs to be in place. One of the commonly used tools for network security is intrusion detection systems (IDS). An IDS tries to identify fraudulent activity using predetermined signatures or pre-established user misbehavior while monitoring incoming traffic. Intrusion detection systems based on signature and behavior cannot detect new attacks and fall when small behavior deviations occur. Many researchers have proposed various approaches to intrusion detection using machine learning techniques as a new and promising tool to remedy this problem. In this paper, the authors present a combination of two machine learning methods, unsupervised clustering followed by a supervised classification framework as a Fast, highly scalable and precise packets classification system. This model's performance is assessed on the new proposed dataset by the Canadian Institute for Cyber security and the University of New Brunswick (CICIDS2017). The overall process was fast, showing high accuracy classification results.

2020-02-17
Ezick, James, Henretty, Tom, Baskaran, Muthu, Lethin, Richard, Feo, John, Tuan, Tai-Ching, Coley, Christopher, Leonard, Leslie, Agrawal, Rajeev, Parsons, Ben et al..  2019.  Combining Tensor Decompositions and Graph Analytics to Provide Cyber Situational Awareness at HPC Scale. 2019 IEEE High Performance Extreme Computing Conference (HPEC). :1–7.

This paper describes MADHAT (Multidimensional Anomaly Detection fusing HPC, Analytics, and Tensors), an integrated workflow that demonstrates the applicability of HPC resources to the problem of maintaining cyber situational awareness. MADHAT combines two high-performance packages: ENSIGN for large-scale sparse tensor decompositions and HAGGLE for graph analytics. Tensor decompositions isolate coherent patterns of network behavior in ways that common clustering methods based on distance metrics cannot. Parallelized graph analysis then uses directed queries on a representation that combines the elements of identified patterns with other available information (such as additional log fields, domain knowledge, network topology, whitelists and blacklists, prior feedback, and published alerts) to confirm or reject a threat hypothesis, collect context, and raise alerts. MADHAT was developed using the collaborative HPC Architecture for Cyber Situational Awareness (HACSAW) research environment and evaluated on structured network sensor logs collected from Defense Research and Engineering Network (DREN) sites using HPC resources at the U.S. Army Engineer Research and Development Center DoD Supercomputing Resource Center (ERDC DSRC). To date, MADHAT has analyzed logs with over 650 million entries.

2020-05-04
Augusto-Gonzalez, J., Collen, A., Evangelatos, S., Anagnostopoulos, M., Spathoulas, G., Giannoutakis, K. M., Votis, K., Tzovaras, D., Genge, B., Gelenbe, E. et al..  2019.  From Internet of Threats to Internet of Things: A Cyber Security Architecture for Smart Homes. 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1–6.
The H2020 European research project GHOST - Safe-Guarding Home IoT Environments with Personalised Real-time Risk Control - aims to deploy a highly effective security framework for IoT smart home residents through a novel reference architecture for user-centric cyber security in smart homes providing an unobtrusive and user-comprehensible solution. The aforementioned security framework leads to a transparent cyber security environment by increasing the effectiveness of the existing cyber security services and enhancing system's self-defence through disruptive software-enabled network security solutions. In this paper, GHOST security framework for IoT-based smart homes is presented. It is aiming to address the security challenges posed by several types of attacks, such as network, device and software. The effective design of the overall multi-layered architecture is analysed, with particular emphasis given to the integration aspects through dynamic and re-configurable solutions and the features provided by each one of the architectural layers. Additionally, real-life trials and the associated use cases are described showcasing the competences and potential of the proposed framework.
2020-03-30
Mashaly, Maggie, El Saied, Ahmed, Alexan, Wassim, Khalifa, Abeer S..  2019.  A Multiple Layer Security Scheme Utilizing Information Matrices. 2019 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA). :284–289.
This paper proposes a double-layer message security scheme that is implemented in two stages. First, the secret data is encrypted using the AES algorithm with a 256-bit key. Second, least significant bit (LSB) embedding is carried out, by hiding the secret message into an image of an information matrix. A number of performance evaluation metrics are discussed and computed for the proposed scheme. The obtained results are compared to other schemes in literature and show the superiority of the proposed scheme.
2020-11-20
Efstathopoulos, G., Grammatikis, P. R., Sarigiannidis, P., Argyriou, V., Sarigiannidis, A., Stamatakis, K., Angelopoulos, M. K., Athanasopoulos, S. K..  2019.  Operational Data Based Intrusion Detection System for Smart Grid. 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.

With the rapid progression of Information and Communication Technology (ICT) and especially of Internet of Things (IoT), the conventional electrical grid is transformed into a new intelligent paradigm, known as Smart Grid (SG). SG provides significant benefits both for utility companies and energy consumers such as the two-way communication (both electricity and information), distributed generation, remote monitoring, self-healing and pervasive control. However, at the same time, this dependence introduces new security challenges, since SG inherits the vulnerabilities of multiple heterogeneous, co-existing legacy and smart technologies, such as IoT and Industrial Control Systems (ICS). An effective countermeasure against the various cyberthreats in SG is the Intrusion Detection System (IDS), informing the operator timely about the possible cyberattacks and anomalies. In this paper, we provide an anomaly-based IDS especially designed for SG utilising operational data from a real power plant. In particular, many machine learning and deep learning models were deployed, introducing novel parameters and feature representations in a comparative study. The evaluation analysis demonstrated the efficacy of the proposed IDS and the improvement due to the suggested complex data representation.

2019-01-16
Aloui, M., Elbiaze, H., Glitho, R., Yangui, S..  2018.  Analytics as a service architecture for cloud-based CDN: Case of video popularity prediction. 2018 15th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–4.
User Generated Videos (UGV) are the dominating content stored in scattered caches to meet end-user Content Delivery Networks (CDN) requests with quality of service. End-User behaviour leads to a highly variable UGV popularity. This aspect can be exploited to efficiently utilize the limited storage of the caches, and improve the hit ratio of UGVs. In this paper, we propose a new architecture for Data Analytics in Cloud-based CDN to derive UGVs popularity online. This architecture uses RESTful web services to gather CDN logs, store them through generic collections in a NoSQL database, and calculate related popular UGVs in a real time fashion. It uses a dynamic model training and prediction services to provide each CDN with related popular videos to be cached based on the latest trained model. The proposed architecture is implemented with k-means clustering prediction model and the obtained results are 99.8% accurate.
2019-02-08
Enoch, Simon Yusuf, Hong, Jin B., Ge, Mengmeng, Alzaid, Hani, Kim, Dong Seong.  2018.  Automated Security Investment Analysis of Dynamic Networks. Proceedings of the Australasian Computer Science Week Multiconference. :6:1-6:10.
It is important to assess the cost benefits of IT security investments. Typically, this is done by manual risk assessment process. In this paper, we propose an approach to automate this using graphical security models (GSMs). GSMs have been used to assess the security of networked systems using various security metrics. Most of the existing GSMs assumed that networks are static, however, modern networks (e.g., Cloud and Software Defined Networking) are dynamic with changes. Thus, it is important to develop an approach that takes into account the dynamic aspects of networks. To this end, we automate security investments analysis of dynamic networks using a GSM named Temporal-Hierarchical Attack Representation Model (T-HARM) in order to automatically evaluate the security investments and their effectiveness for a given period of time. We demonstrate our approach via simulations.
2020-07-30
Ernawan, Ferda, Kabir, Muhammad Nomani.  2018.  A blind watermarking technique using redundant wavelet transform for copyright protection. 2018 IEEE 14th International Colloquium on Signal Processing Its Applications (CSPA). :221—226.
A digital watermarking technique is an alternative method to protect the intellectual property of digital images. This paper presents a hybrid blind watermarking technique formulated by combining RDWT with SVD considering a trade-off between imperceptibility and robustness. Watermark embedding locations are determined using a modified entropy of the host image. Watermark embedding is employed by examining the orthogonal matrix U obtained from the hybrid scheme RDWT-SVD. In the proposed scheme, the watermark image in binary format is scrambled by Arnold chaotic map to provide extra security. Our scheme is tested under different types of signal processing and geometrical attacks. The test results demonstrate that the proposed scheme provides higher robustness and less distortion than other existing schemes in withstanding JPEG2000 compression, cropping, scaling and other noises.
2019-09-23
Eugster, P., Marson, G. A., Poettering, B..  2018.  A Cryptographic Look at Multi-party Channels. 2018 IEEE 31st Computer Security Foundations Symposium (CSF). :31–45.
Cryptographic channels aim to enable authenticated and confidential communication over the Internet. The general understanding seems to be that providing security in the sense of authenticated encryption for every (unidirectional) point-to-point link suffices to achieve this goal. As recently shown (in FSE17/ToSC17), however, the security properties of the unidirectional links do not extend, in general, to the bidirectional channel as a whole. Intuitively, the reason for this is that the increased interaction in bidirectional communication can be exploited by an adversary. The same applies, a fortiori, in a multi-party setting where several users operate concurrently and the communication develops in more directions. In the cryptographic literature, however, the targeted goals for group communication in terms of channel security are still unexplored. Applying the methodology of provable security, we fill this gap by defining exact (game-based) authenticity and confidentiality goals for broadcast communication, and showing how to achieve them. Importantly, our security notions also account for the causal dependencies between exchanged messages, thus naturally extending the bidirectional case where causal relationships are automatically captured by preserving the sending order. On the constructive side we propose a modular and yet efficient protocol that, assuming only point-to-point links between users, leverages (non-cryptographic) broadcast and standard cryptographic primitives to a full-fledged broadcast channel that provably meets the security notions we put forth.
2019-03-06
Mito, M., Murata, K., Eguchi, D., Mori, Y., Toyonaga, M..  2018.  A Data Reconstruction Method for The Big-Data Analysis. 2018 9th International Conference on Awareness Science and Technology (iCAST). :319-323.
In recent years, the big-data approach has become important within various business operations and sales judgment tactics. Contrarily, numerous privacy problems limit the progress of their analysis technologies. To mitigate such problems, this paper proposes several privacy-preserving methods, i.e., anonymization, extreme value record elimination, fully encrypted analysis, and so on. However, privacy-cracking fears still remain that prevent the open use of big-data by other, external organizations. We propose a big-data reconstruction method that does not intrinsically use privacy data. The method uses only the statistical features of big-data, i.e., its attribute histograms and their correlation coefficients. To verify whether valuable information can be extracted using this method, we evaluate the data by using Self Organizing Map (SOM) as one of the big-data analysis tools. The results show that the same pieces of information are extracted from our data and the big-data.
2020-10-26
Eryonucu, Cihan, Ayday, Erman, Zeydan, Engin.  2018.  A Demonstration of Privacy-Preserving Aggregate Queries for Optimal Location Selection. 2018 IEEE 19th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). :1–3.
In recent years, service providers, such as mobile operators providing wireless services, collected location data in enormous extent with the increase of the usages of mobile phones. Vertical businesses, such as banks, may want to use this location information for their own scenarios. However, service providers cannot directly provide these private data to the vertical businesses because of the privacy and legal issues. In this demo, we show how privacy preserving solutions can be utilized using such location-based queries without revealing each organization's sensitive data. In our demonstration, we used partially homomorphic cryptosystem in our protocols and showed practicality and feasibility of our proposed solution.
2018-09-30
Eckard Böde, Matthias Büker, Ulrich Eberle, Martin Fränzle, Sebastian Gerwinn, Birte Kramer.  2018.  Efficient Splitting of Test and Simulation Cases for the Verification of Highly Automated Driving Functions. Computer Safety, Reliability, and Security. :139-153.
We address the question of feasibility of tests to verify highly automated driving functions by optimizing the trade-off between virtual tests for verifying safety properties and physical tests for validating the models used for such verification. We follow a quantitative approach based on a probabilistic treatment of the different quantities in question. That is, we quantify the accuracy of a model in terms of its probabilistic prediction ability. Similarly, we quantify the compliance of a system with its requirements in terms of the probability of satisfying these requirements. Depending on the costs of an individual virtual and physical test we are then able to calculate an optimal trade-off between physical and virtual tests, yet guaranteeing a probability of satisfying all requirements.
2019-01-16
Reeder, Robert W., Felt, Adrienne Porter, Consolvo, Sunny, Malkin, Nathan, Thompson, Christopher, Egelman, Serge.  2018.  An Experience Sampling Study of User Reactions to Browser Warnings in the Field. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. :512:1–512:13.
Web browser warnings should help protect people from malware, phishing, and network attacks. Adhering to warnings keeps people safer online. Recent improvements in warning design have raised adherence rates, but they could still be higher. And prior work suggests many people still do not understand them. Thus, two challenges remain: increasing both comprehension and adherence rates. To dig deeper into user decision making and comprehension of warnings, we performed an experience sampling study of web browser security warnings, which involved surveying over 6,000 Chrome and Firefox users in situ to gather reasons for adhering or not to real warnings. We find these reasons are many and vary with context. Contrary to older prior work, we do not find a single dominant failure in modern warning design—like habituation—that prevents effective decisions. We conclude that further improvements to warnings will require solving a range of smaller contextual misunderstandings.
2019-05-08
Richter, Timo, Escher, Stephan, Schönfeld, Dagmar, Strufe, Thorsten.  2018.  Forensic Analysis and Anonymisation of Printed Documents. Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. :127–138.
Contrary to popular belief, the paperless office has not yet established itself. Printer forensics is therefore still an important field today to protect the reliability of printed documents or to track criminals. An important task of this is to identify the source device of a printed document. There are many forensic approaches that try to determine the source device automatically and with commercially available recording devices. However, it is difficult to find intrinsic signatures that are robust against a variety of influences of the printing process and at the same time can identify the specific source device. In most cases, the identification rate only reaches up to the printer model. For this reason we reviewed document colour tracking dots, an extrinsic signature embedded in nearly all modern colour laser printers. We developed a refined and generic extraction algorithm, found a new tracking dot pattern and decoded pattern information. Through out we propose to reuse document colour tracking dots, in combination with passive printer forensic methods. From privacy perspective we additional investigated anonymization approaches to defeat arbitrary tracking. Finally we propose our toolkitdeda which implements the entire workflow of extracting, analysing and anonymisation of a tracking dot pattern.
2018-09-30
Werner Damm, Eike Möhlmann, Thomas Peikenkamp, Astrid Rakow.  2018.  A Formal Semantics for Traffic Sequence Charts. Principles of Modeling - Essays Dedicated to Edward A. Lee on the Occasion of His 60th Birthday. :182–205.
2019-03-18
Elsden, Chris, Nissen, Bettina, Jabbar, Karim, Talhouk, Reem, Lustig, Caitlin, Dunphy, Paul, Speed, Chris, Vines, John.  2018.  HCI for Blockchain: Studying, Designing, Critiquing and Envisioning Distributed Ledger Technologies. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems. :W28:1–W28:8.
This workshop aims to develop an agenda within the CHI community to address the emergence of blockchain, or distributed ledger technologies (DLTs). As blockchains emerge as a general purpose technology, with applications well beyond cryptocurrencies, DLTs present exciting challenges and opportunities for developing new ways for people and things to transact, collaborate, organize and identify themselves. Requiring interdisciplinary skills and thinking, the field of HCI is well placed to contribute to the research and development of this technology. This workshop will build a community for human-centred researchers and practitioners to present studies, critiques, design-led work, and visions of blockchain applications.
2020-06-01
Alshinina, Remah, Elleithy, Khaled.  2018.  A highly accurate machine learning approach for developing wireless sensor network middleware. 2018 Wireless Telecommunications Symposium (WTS). :1–7.
Despite the popularity of wireless sensor networks (WSNs) in a wide range of applications, security problems associated with them have not been completely resolved. Middleware is generally introduced as an intermediate layer between WSNs and the end user to resolve some limitations, but most of the existing middleware is unable to protect data from malicious and unknown attacks during transmission. This paper introduces an intelligent middleware based on an unsupervised learning technique called Generative Adversarial Networks (GANs) algorithm. GANs contain two networks: a generator (G) network and a detector (D) network. The G creates fake data similar to the real samples and combines it with real data from the sensors to confuse the attacker. The D contains multi-layers that have the ability to differentiate between real and fake data. The output intended for this algorithm shows an actual interpretation of the data that is securely communicated through the WSN. The framework is implemented in Python with experiments performed using Keras. Results illustrate that the suggested algorithm not only improves the accuracy of the data but also enhances its security by protecting data from adversaries. Data transmission from the WSN to the end user then becomes much more secure and accurate compared to conventional techniques.
2020-07-27
Vöelp, Marcus, Esteves-Verissimo, Paulo.  2018.  Intrusion-Tolerant Autonomous Driving. 2018 IEEE 21st International Symposium on Real-Time Distributed Computing (ISORC). :130–133.
Fully autonomous driving is one if not the killer application for the upcoming decade of real-time systems. However, in the presence of increasingly sophisticated attacks by highly skilled and well equipped adversarial teams, autonomous driving must not only guarantee timeliness and hence safety. It must also consider the dependability of the software concerning these properties while the system is facing attacks. For distributed systems, fault-and-intrusion tolerance toolboxes already offer a few solutions to tolerate partial compromise of the system behind a majority of healthy components operating in consensus. In this paper, we present a concept of an intrusion-tolerant architecture for autonomous driving. In such a scenario, predictability and recovery challenges arise from the inclusion of increasingly more complex software on increasingly less predictable hardware. We highlight how an intrusion tolerant design can help solve these issues by allowing timeliness to emerge from a majority of complex components being fast enough, often enough while preserving safety under attack through pre-computed fail safes.
2019-03-06
El Haourani, Lamia, Elkalam, Anas Abou, Ouahman, Abdelah Ait.  2018.  Knowledge Based Access Control a Model for Security and Privacy in the Big Data. Proceedings of the 3rd International Conference on Smart City Applications. :16:1-16:8.
The most popular features of Big Data revolve around the so-called "3V" criterion: Volume, Variety and Velocity. Big Data is based on the massive collection and in-depth analysis of personal data, with a view to profiling, or even marketing and commercialization, thus violating citizens' privacy and the security of their data. In this article we discuss security and privacy solutions in the context of Big Data. We then focus on access control and present our new model called Knowledge-based Access Control (KBAC); this strengthens the access control already deployed in the target company (e.g., based on "RBAC" role or "ABAC" attributes for example) by adding a semantic access control layer. KBAC offers thinner access control, tailored to Big Data, with effective protection against intrusion attempts and unauthorized data inferences.
2019-10-15
Aublin, Pierre-Louis, Kelbert, Florian, O'Keeffe, Dan, Muthukumaran, Divya, Priebe, Christian, Lind, Joshua, Krahn, Robert, Fetzer, Christof, Eyers, David, Pietzuch, Peter.  2018.  LibSEAL: Revealing Service Integrity Violations Using Trusted Execution. Proceedings of the Thirteenth EuroSys Conference. :24:1–24:15.
Users of online services such as messaging, code hosting and collaborative document editing expect the services to uphold the integrity of their data. Despite providers' best efforts, data corruption still occurs, but at present service integrity violations are excluded from SLAs. For providers to include such violations as part of SLAs, the competing requirements of clients and providers must be satisfied. Clients need the ability to independently identify and prove service integrity violations to claim compensation. At the same time, providers must be able to refute spurious claims. We describe LibSEAL, a SEcure Audit Library for Internet services that creates a non-repudiable audit log of service operations and checks invariants to discover violations of service integrity. LibSEAL is a drop-in replacement for TLS libraries used by services, and thus observes and logs all service requests and responses. It runs inside a trusted execution environment, such as Intel SGX, to protect the integrity of the audit log. Logs are stored using an embedded relational database, permitting service invariant violations to be discovered using simple SQL queries. We evaluate LibSEAL with three popular online services (Git, ownCloud and Dropbox) and demonstrate that it is effective in discovering integrity violations, while reducing throughput by at most 14%.