Biblio

Found 951 results

Filters: First Letter Of Last Name is E  [Clear All Filters]
2023-02-17
Khan, Muhammad Maaz Ali, Ehabe, Enow Nkongho, Mailewa, Akalanka B..  2022.  Discovering the Need for Information Assurance to Assure the End Users: Methodologies and Best Practices. 2022 IEEE International Conference on Electro Information Technology (eIT). :131–138.

The use of software to support the information infrastructure that governments, critical infrastructure providers and businesses worldwide rely on for their daily operations and business processes is gradually becoming unavoidable. Commercial off-the shelf software is widely and increasingly used by these organizations to automate processes with information technology. That notwithstanding, cyber-attacks are becoming stealthier and more sophisticated, which has led to a complex and dynamic risk environment for IT-based operations which users are working to better understand and manage. This has made users become increasingly concerned about the integrity, security and reliability of commercial software. To meet up with these concerns and meet customer requirements, vendors have undertaken significant efforts to reduce vulnerabilities, improve resistance to attack and protect the integrity of the products they sell. These efforts are often referred to as “software assurance.” Software assurance is becoming very important for organizations critical to public safety and economic and national security. These users require a high level of confidence that commercial software is as secure as possible, something only achieved when software is created using best practices for secure software development. Therefore, in this paper, we explore the need for information assurance and its importance for both organizations and end users, methodologies and best practices for software security and information assurance, and we also conducted a survey to understand end users’ opinions on the methodologies researched in this paper and their impact.

ISSN: 2154-0373

2023-03-17
ELMansy, Hossam, Metwally, Khaled, Badran, Khaled.  2022.  MPTCP-based Security Schema in Fog Computing. 2022 13th International Conference on Electrical Engineering (ICEENG). :134–138.

Recently, Cloud Computing became one of today’s great innovations for provisioning Information Technology (IT) resources. Moreover, a new model has been introduced named Fog Computing, which addresses Cloud Computing paradigm issues regarding time delay and high cost. However, security challenges are still a big concern about the vulnerabilities to both Cloud and Fog Computing systems. Man- in- the- Middle (MITM) is considered one of the most destructive attacks in a Fog Computing context. Moreover, it’s very complex to detect MiTM attacks as it is performed passively at the Software-Defined Networking (SDN) level, also the Fog Computing paradigm is ideally suitable for MITM attacks. In this paper, a MITM mitigation scheme will be proposed consisting of an SDN network (Fog Leaders) which controls a layer of Fog Nodes. Furthermore, Multi-Path TCP (MPTCP) has been used between all edge devices and Fog Nodes to improve resource utilization and security. The proposed solution performance evaluation has been carried out in a simulation environment using Mininet, Ryu SDN controller and Multipath TCP (MPTCP) Linux kernel. The experimental results showed that the proposed solution improves security, network resiliency and resource utilization without any significant overheads compared to the traditional TCP implementation.

2023-03-31
L, Shammi, Milind, Emilin Shyni, C., Ul Nisa, Khair, Bora, Ravi Kumar, Saravanan, S..  2022.  Securing Biometric Data with Optimized Share Creation and Visual Cryptography Technique. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :673–679.

Biometric security is the fastest growing area that receives considerable attention over the past few years. Digital hiding and encryption technologies provide an effective solution to secure biometric information from intentional or accidental attacks. Visual cryptography is the approach utilized for encrypting the information which is in the form of visual information for example images. Meanwhile, the biometric template stored in the databases are generally in the form of images, the visual cryptography could be employed effectively for encrypting the template from the attack. This study develops a share creation with improved encryption process for secure biometric verification (SCIEP-SBV) technique. The presented SCIEP-SBV technique majorly aims to attain security via encryption and share creation (SC) procedure. Firstly, the biometric images undergo SC process to produce several shares. For encryption process, homomorphic encryption (HE) technique is utilized in this work. To further improve the secrecy, an improved bald eagle search (IBES) approach was exploited in this work. The simulation values of the SCIEP-SBV system are tested on biometric images. The extensive comparison study demonstrated the improved outcomes of the SCIEP-SBV technique over compared methods.

2023-07-21
Eze, Emmanuel O., Keates, Simeon, Pedram, Kamran, Esfahani, Alireza, Odih, Uchenna.  2022.  A Context-Based Decision-Making Trust Scheme for Malicious Detection in Connected and Autonomous Vehicles. 2022 International Conference on Computing, Electronics & Communications Engineering (iCCECE). :31—36.
The fast-evolving Intelligent Transportation Systems (ITS) are crucial in the 21st century, promising answers to congestion and accidents that bother people worldwide. ITS applications such as Connected and Autonomous Vehicle (CAVs) update and broadcasts road incident event messages, and this requires significant data to be transmitted between vehicles for a decision to be made in real-time. However, broadcasting trusted incident messages such as accident alerts between vehicles pose a challenge for CAVs. Most of the existing-trust solutions are based on the vehicle's direct interaction base reputation and the psychological approaches to evaluate the trustworthiness of the received messages. This paper provides a scheme for improving trust in the received incident alert messages for real-time decision-making to detect malicious alerts between CAVs using direct and indirect interactions. This paper applies artificial intelligence and statistical data classification for decision-making on the received messages. The model is trained based on the US Department of Technology Safety Pilot Deployment Model (SPMD). An Autonomous Decision-making Trust Scheme (ADmTS) that incorporates a machine learning algorithm and a local trust manager for decision-making has been developed. The experiment showed that the trained model could make correct predictions such as 98% and 0.55% standard deviation accuracy in predicting false alerts on the 25% malicious data
2023-02-17
El-Korashy, Akram, Blanco, Roberto, Thibault, Jérémy, Durier, Adrien, Garg, Deepak, Hritcu, Catalin.  2022.  SecurePtrs: Proving Secure Compilation with Data-Flow Back-Translation and Turn-Taking Simulation. 2022 IEEE 35th Computer Security Foundations Symposium (CSF). :64–79.

Proving secure compilation of partial programs typically requires back-translating an attack against the compiled program to an attack against the source program. To prove back-translation, one can syntactically translate the target attacker to a source one-i.e., syntax-directed back-translation-or show that the interaction traces of the target attacker can also be emitted by source attackers—i.e., trace-directed back-translation. Syntax-directed back-translation is not suitable when the target attacker may use unstructured control flow that the source language cannot directly represent. Trace-directed back-translation works with such syntactic dissimilarity because only the external interactions of the target attacker have to be mimicked in the source, not its internal control flow. Revealing only external interactions is, however, inconvenient when sharing memory via unforgeable pointers, since information about shared pointers stashed in private memory is not present on the trace. This made prior proofs unnecessarily complex, since the generated attacker had to instead stash all reachable pointers. In this work, we introduce more informative data-flow traces, combining the best of syntax- and trace-directed back-translation in a simpler technique that handles both syntactic dissimilarity and memory sharing well, and that is proved correct in Coq. Additionally, we develop a novel turn-taking simulation relation and use it to prove a recomposition lemma, which is key to reusing compiler correctness in such secure compilation proofs. We are the first to mechanize such a recomposition lemma in the presence of memory sharing. We use these two innovations in a secure compilation proof for a code generation compiler pass between a source language with structured control flow and a target language with unstructured control flow, both with safe pointers and components.

2023-08-18
Gawehn, Philip, Ergenc, Doganalp, Fischer, Mathias.  2022.  Deep Learning-based Multi-PLC Anomaly Detection in Industrial Control Systems. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :4878—4884.
Industrial control systems (ICSs) have become more complex due to their increasing connectivity, heterogeneity and, autonomy. As a result, cyber-threats against such systems have been significantly increased as well. Since a compromised industrial system can easily lead to hazardous safety and security consequences, it is crucial to develop security countermeasures to protect coexisting IT systems and industrial physical processes being involved in modern ICSs. Accordingly, in this study, we propose a deep learning-based semantic anomaly detection framework to model the complex behavior of ICSs. In contrast to the related work assuming only simpler security threats targeting individual controllers in an ICS, we address multi-PLC attacks that are harder to detect as requiring to observe the overall system state alongside single-PLC attacks. Using industrial simulation and emulation frameworks, we create a realistic setup representing both the production and networking aspects of industrial systems and conduct some potential attacks. Our experimental results indicate that our model can detect single-PLC attacks with 95% accuracy and multi-PLC attacks with 80% accuracy and nearly 1% false positive rate.
2023-02-03
Philomina, Josna, Fahim Fathima, K A, Gayathri, S, Elias, Glory Elizabeth, Menon, Abhinaya A.  2022.  A comparitative study of machine learning models for the detection of Phishing Websites. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1–7.
Global cybersecurity threats have grown as a result of the evolving digital transformation. Cybercriminals have more opportunities as a result of digitization. Initially, cyberthreats take the form of phishing in order to gain confidential user credentials.As cyber-attacks get more sophisticated and sophisticated, the cybersecurity industry is faced with the problem of utilising cutting-edge technology and techniques to combat the ever-present hostile threats. Hackers use phishing to persuade customers to grant them access to a company’s digital assets and networks. As technology progressed, phishing attempts became more sophisticated, necessitating the development of tools to detect phishing.Machine learning is unsupervised one of the most powerful weapons in the fight against terrorist threats. The features used for phishing detection, as well as the approaches employed with machine learning, are discussed in this study.In this light, the study’s major goal is to propose a unique, robust ensemble machine learning model architecture that gives the highest prediction accuracy with the lowest error rate, while also recommending a few alternative robust machine learning models.Finally, the Random forest algorithm attained a maximum accuracy of 96.454 percent. But by implementing a hybrid model including the 3 classifiers- Decision Trees,Random forest, Gradient boosting classifiers, the accuracy increases to 98.4 percent.
2022-12-09
Usman Rana, M., Elahi, O., Mushtaq, M., Ali Shah, M..  2022.  Identity based cryptography for ad hoc networks. Competitive Advantage in the Digital Economy (CADE 2022). 2022:93—98.
With the rapid growth of wireless communication, sensor technology, and mobile computing, the ad hoc network has gained increasing attention from governments, corporations, and scientific research organisations. Ad hoc and sensor network security has become crucial. Malicious node identification, network resilience and survival, and trust models are among the security challenges discussed. The security of ad hoc networks is a key problem. In this paper, we'll look at a few security procedures and approaches that can be useful in keeping this network secure. We've compiled a list of all the ad networks' descriptions with explanations. Before presenting our conclusions from the examination of the literature, we went through various papers on the issue. The taxonomy diagram for the Ad-hoc Decentralized Network is the next item on the agenda. Security is one of the most significant challenges with an ad hoc network. In most cases, cyber-attackers will be able to connect to a wireless ad hoc network and, as a result, to the device if they reach within signal range. So, we moved on to a discussion of VANET, UAVs security issues discovered in the field. The outcomes of various ad hoc network methods were then summarised in the form tables. Furthermore, the Diffie Hellman Key Exchange is used to investigate strategies for improving ad-hoc network security and privacy in the next section, and a comparison of RSA with Diffie Hellman is also illustrated. This paper can be used as a guide and reference to provide readers with a broad knowledge of wireless ad hoc networks and how to deal with their security issues.
2022-12-06
Lafci, Mehmet, Ertuğ, Özgür.  2022.  Performance Optimization of 6LoWPAN Systems for RF AMR System Using Turbo and LDPC Codes. 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). CFP2255E-ART:1-4.

This work analyzed the coding gain that is provided in 6LoWPAN transceivers when channel-coding methods are used. There were made improvements at physical layer of 6LoWPAN technology in the system suggested. Performance analysis was performed using turbo, LDPC and convolutional codes on IEEE 802.15.4 standard that is used in the relevant physical layer. Code rate of convolutional and turbo codes are set to 1/3 and 1/4. For LDPC codes, the code rate is set as 3/4 and 5/6. According to simulation results obtained from the MATLAB environment, turbo codes give better results than LDPC and convolutional codes. It is seen that an average of 3 dB to 8 dB gain is achieved in turbo codes, in LDPC and convolutional coding, it is observed that the gain is between 2 dB and 6 dB depending on the modulation type and code rate.

2023-02-17
Esterwood, Connor, Robert, Lionel P..  2022.  Having the Right Attitude: How Attitude Impacts Trust Repair in Human—Robot Interaction. 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :332–341.
Robot co-workers, like human co-workers, make mistakes that undermine trust. Yet, trust is just as important in promoting human-robot collaboration as it is in promoting human-human collaboration. In addition, individuals can signif-icantly differ in their attitudes toward robots, which can also impact or hinder their trust in robots. To better understand how individual attitude can influence trust repair strategies, we propose a theoretical model that draws from the theory of cognitive dissonance. To empirically verify this model, we conducted a between-subjects experiment with 100 participants assigned to one of four repair strategies (apologies, denials, explanations, or promises) over three trust violations. Individual attitudes did moderate the efficacy of repair strategies and this effect differed over successive trust violations. Specifically, repair strategies were most effective relative to individual attitude during the second of the three trust violations, and promises were the trust repair strategy most impacted by an individual's attitude.
2022-12-01
Embarak, Ossama.  2022.  An adaptive paradigm for smart education systems in smart cities using the internet of behaviour (IoB) and explainable artificial intelligence (XAI). 2022 8th International Conference on Information Technology Trends (ITT). :74—79.
The rapid shift towards smart cities, particularly in the era of pandemics, necessitates the employment of e-learning, remote learning systems, and hybrid models. Building adaptive and personalized education becomes a requirement to mitigate the downsides of distant learning while maintaining high levels of achievement. Explainable artificial intelligence (XAI), machine learning (ML), and the internet of behaviour (IoB) are just a few of the technologies that are helping to shape the future of smart education in the age of smart cities through Customization and personalization. This study presents a paradigm for smart education based on the integration of XAI and IoB technologies. The research uses data acquired on students' behaviours to determine whether or not the current education systems respond appropriately to learners' requirements. Despite the existence of sophisticated education systems, they have not yet reached the degree of development that allows them to be tailored to learners' cognitive needs and support them in the absence of face-to-face instruction. The study collected data on 41 learner's behaviours in response to academic activities and assessed whether the running systems were able to capture such behaviours and respond appropriately or not; the study used evaluation methods that demonstrated that there is a change in students' academic progression concerning monitoring using IoT/IoB to enable a relative response to support their progression.
2023-03-03
Mhaouch, Ayoub, Elhamzi, Wajdi, Abdelali, Abdessalem Ben, Atri, Mohamed.  2022.  Efficient Serial Architecture for PRESENT Block Cipher. 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). :45–49.
In recent years, the use of the Internet of Things (IoT) has increased rapidly in different areas. Due to many IoT applications, many limitations have emerged such as power consumption and limited resources. The security of connected devices is becoming more and more a primary need for the reliability of systems. Among other things, power consumption remains an essential constraint with a major impact on the quality of the encryption system. For these, several lightweight cryptography algorithms were proposed and developed. The PRESENT algorithm is one of the lightweight block cipher algorithms that has been proposed for a highly restrictive application. In this paper, we have proposed an efficient hardware serial architecture that uses 16 bits for data path encryption. It uses fewer FPGA resources and achieves higher throughput compared to other existing hardware applications.
2022-12-20
Speith, Julian, Schweins, Florian, Ender, Maik, Fyrbiak, Marc, May, Alexander, Paar, Christof.  2022.  How Not to Protect Your IP – An Industry-Wide Break of IEEE 1735 Implementations. 2022 IEEE Symposium on Security and Privacy (SP). :1656–1671.
Modern hardware systems are composed of a variety of third-party Intellectual Property (IP) cores to implement their overall functionality. Since hardware design is a globalized process involving various (untrusted) stakeholders, a secure management of the valuable IP between authors and users is inevitable to protect them from unauthorized access and modification. To this end, the widely adopted IEEE standard 1735-2014 was created to ensure confidentiality and integrity. In this paper, we outline structural weaknesses in IEEE 1735 that cannot be fixed with cryptographic solutions (given the contemporary hardware design process) and thus render the standard inherently insecure. We practically demonstrate the weaknesses by recovering the private keys of IEEE 1735 implementations from major Electronic Design Automation (EDA) tool vendors, namely Intel, Xilinx, Cadence, Siemens, Microsemi, and Lattice, while results on a seventh case study are withheld. As a consequence, we can decrypt, modify, and re-encrypt all allegedly protected IP cores designed for the respective tools, thus leading to an industry-wide break. As part of this analysis, we are the first to publicly disclose three RSA-based white-box schemes that are used in real-world products and present cryptanalytical attacks for all of them, finally resulting in key recovery.
2023-03-03
Shrestha, Raj, Leinonen, Juho, Zavgorodniaia, Albina, Hellas, Arto, Edwards, John.  2022.  Pausing While Programming: Insights From Keystroke Analysis. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET). :187–198.
Pauses in typing are generally considered to indicate cognitive processing and so are of interest in educational contexts. While much prior work has looked at typing behavior of Computer Science students, this paper presents results of a study specifically on the pausing behavior of students in Introductory Computer Programming. We investigate the frequency of pauses of different lengths, what last actions students take before pausing, and whether there is a correlation between pause length and performance in the course. We find evidence that frequency of pauses of all lengths is negatively correlated with performance, and that, while some keystrokes initiate pauses consistently across pause lengths, other keystrokes more commonly initiate short or long pauses. Clustering analysis discovers two groups of students, one that takes relatively fewer mid-to-long pauses and performs better on exams than the other.
2022-12-20
Şimşek, Merve Melis, Ergun, Tamer, Temuçin, Hüseyin.  2022.  SSL Test Suite: SSL Certificate Test Public Key Infrastructure. 2022 30th Signal Processing and Communications Applications Conference (SIU). :1–4.
Today, many internet-based applications, especially e-commerce and banking applications, require the transfer of personal data and sensitive data such as credit card information, and in this process, all operations are carried out over the Internet. Users frequently perform these transactions, which require high security, on web sites they access via web browsers. This makes the browser one of the most basic software on the Internet. The security of the communication between the user and the website is provided with SSL certificates, which is used for server authentication. Certificates issued by Certificate Authorities (CA) that have passed international audits must meet certain conditions. The criteria for the issuance of certificates are defined in the Baseline Requirements (BR) document published by the Certificate Authority/Browser (CA/B) Forum, which is accepted as the authority in the WEB Public Key Infrastructure (WEB PKI) ecosystem. Issuing the certificates in accordance with the defined criteria is not sufficient on its own to establish a secure SSL connection. In order to ensure a secure connection and confirm the identity of the website, the certificate validation task falls to the web browsers with which users interact the most. In this study, a comprehensive SSL certificate public key infrastructure (SSL Test Suite) was established to test the behavior of web browsers against certificates that do not comply with BR requirements. With the designed test suite, it is aimed to analyze the certificate validation behaviors of web browsers effectively.
ISSN: 2165-0608
2023-01-05
Ezzahra, Essaber Fatima, Rachid, Benmoussa, Roland, De Guio.  2022.  Toward Lean Green Supply Chain Performance, A Risk Management Approach. 2022 14th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA). :1—6.
The purpose of this research work is to develop an approach based on risk management with a view to provide managers and decision-makers with assistance and appropriate guidelines to combine Lean and Green in a successful and integrated way. Risk cannot be managed if not well-identified; hence, a classification of supply chain risks in a Lean Green context was provided. Subsequently to risk identification an approach based on Weighted Product Method (WPM) was proposed; for risk assessment and prioritization, for its ease of use, flexibility and board adaptability. The output of this analysis provides visibility about organization's position toward desired performance and underlines crucial risks to be addressed which marks the starting point of the way to performance improvement. A case study was introduced to demonstrate the applicability and relevance of the developed framework.
2023-02-17
Cobos, Luis-Pedro, Miao, Tianlei, Sowka, Kacper, Madzudzo, Garikayi, Ruddle, Alastair R., El Amam, Ehab.  2022.  Application of an Automotive Assurance Case Approach to Autonomous Marine Vessel Security. 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). :1–9.
The increase of autonomy in autonomous surface vehicles development brings along modified and new risks and potential hazards, this in turn, introduces the need for processes and methods for ensuring that systems are acceptable for their intended use with respect to dependability and safety concerns. One approach for evaluating software requirements for claims of safety is to employ an assurance case. Much like a legal case, the assurance case lays out an argument and supporting evidence to provide assurance on the software requirements. This paper analyses safety and security requirements relating to autonomous vessels, and regulations in the automotive industry and the marine industry before proposing a generic cybersecurity and safety assurance case that takes a general graphical approach of Goal Structuring Notation (GSN).
2023-08-18
Chirupphapa, Pawissakan, Hossain, Md Delwar, Esaki, Hiroshi, Ochiai, Hideya.  2022.  Unsupervised Anomaly Detection in RS-485 Traffic using Autoencoders with Unobtrusive Measurement. 2022 IEEE International Performance, Computing, and Communications Conference (IPCCC). :17—23.
Remotely connected devices have been adopted in several industrial control systems (ICS) recently due to the advancement in the Industrial Internet of Things (IIoT). This led to new security vulnerabilities because of the expansion of the attack surface. Moreover, cybersecurity incidents in critical infrastructures are increasing. In the ICS, RS-485 cables are widely used in its network for serial communication between each component. However, almost 30 years ago, most of the industrial network protocols implemented over RS-485 such as Modbus were designed without security features. Therefore, anomaly detection is required in industrial control networks to secure communication in the systems. The goal of this paper is to study unsupervised anomaly detection in RS-485 traffic using autoencoders. Five threat scenarios in the physical layer of the industrial control network are proposed. The novelty of our method is that RS-485 traffic is collected indirectly by an analog-to-digital converter. In the experiments, multilayer perceptron (MLP), 1D convolutional, Long Short-Term Memory (LSTM) autoencoders are trained to detect anomalies. The results show that three autoencoders effectively detect anomalous traffic with F1-scores of 0.963, 0.949, and 0.928 respectively. Due to the indirect traffic collection, our method can be practically applied in the industrial control network.
2023-09-01
Küçük, Düzgün, Yakut, Ömer Faruk, Cevız, Barış, Çakar, Emre, Ertam, Fatih.  2022.  Data Manipulation and Digital Forensics Analysis on WhatsApp Application. 2022 15th International Conference on Information Security and Cryptography (ISCTURKEY). :19—24.
WhatsApp is one of the rare applications that has managed to become one of the most popular instant messaging applications all over the world. While inherently designed for simple and fast communication, privacy features such as end-to-end encryption have made confidential communication easy for criminals aiming to commit illegal acts. However, as it meets many daily communication and communication needs, it has a great potential to be digital evidence in interpersonal disputes. In this study, in parallel with the potential of WhatsApp application to contain digital evidence, the abuse of this situation and the manipulation method of multimedia files, which may cause wrong decisions by the judicial authorities, are discussed. The dangerous side of this method, which makes the analysis difficult, is that it can be applied by anyone without the need for high-level root authority or any other application on these devices. In addition, it is difficult to detect as no changes can be made in the database during the analysis phase. In this study, a controlled experimental environment was prepared on the example scenario, the manipulation was carried out and the prepared system analysis was included. The results obtained showed that the evidence at the forensic analysis stage is open to misinterpretation.
2023-08-16
Liu, Lisa, Engelen, Gints, Lynar, Timothy, Essam, Daryl, Joosen, Wouter.  2022.  Error Prevalence in NIDS datasets: A Case Study on CIC-IDS-2017 and CSE-CIC-IDS-2018. 2022 IEEE Conference on Communications and Network Security (CNS). :254—262.
Benchmark datasets are heavily depended upon by the research community to validate theoretical findings and track progression in the state-of-the-art. NIDS dataset creation presents numerous challenges on account of the volume, heterogeneity, and complexity of network traffic, making the process labor intensive, and thus, prone to error. This paper provides a critical review of CIC-IDS-2017 and CIC-CSE-IDS-2018, datasets which have seen extensive usage in the NIDS literature, and are currently considered primary benchmarking datasets for NIDS. We report a large number of previously undocumented errors throughout the dataset creation lifecycle, including in attack orchestration, feature generation, documentation, and labeling. The errors destabilize the results and challenge the findings of numerous publications that have relied on it as a benchmark. We demonstrate the implications of these errors through several experiments. We provide comprehensive documentation to summarize the discovery of these issues, as well as a fully-recreated dataset, with labeling logic that has been reverse-engineered, corrected, and made publicly available for the first time. We demonstrate the implications of dataset errors through a series of experiments. The findings serve to remind the research community of common pitfalls with dataset creation processes, and of the need to be vigilant when adopting new datasets. Lastly, we strongly recommend the release of labeling logic for any dataset released, to ensure full transparency.
2023-01-20
Sen, Ömer, Eze, Chijioke, Ulbig, Andreas, Monti, Antonello.  2022.  On Holistic Multi-Step Cyberattack Detection via a Graph-based Correlation Approach. 2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :380–386.
While digitization of distribution grids through information and communications technology brings numerous benefits, it also increases the grid's vulnerability to serious cyber attacks. Unlike conventional systems, attacks on many industrial control systems such as power grids often occur in multiple stages, with the attacker taking several steps at once to achieve its goal. Detection mechanisms with situational awareness are needed to detect orchestrated attack steps as part of a coherent attack campaign. To provide a foundation for detection and prevention of such attacks, this paper addresses the detection of multi-stage cyber attacks with the aid of a graph-based cyber intelligence database and alert correlation approach. Specifically, we propose an approach to detect multi-stage attacks by lever-aging heterogeneous data to form a knowledge base and employ a model-based correlation approach on the generated alerts to identify multi-stage cyber attack sequences taking place in the network. We investigate the detection quality of the proposed approach by using a case study of a multi-stage cyber attack campaign in a future-orientated power grid pilot.
2023-04-28
Dutta, Ashutosh, Hammad, Eman, Enright, Michael, Behmann, Fawzi, Chorti, Arsenia, Cheema, Ahmad, Kadio, Kassi, Urbina-Pineda, Julia, Alam, Khaled, Limam, Ahmed et al..  2022.  Security and Privacy. 2022 IEEE Future Networks World Forum (FNWF). :1–71.
The digital transformation brought on by 5G is redefining current models of end-to-end (E2E) connectivity and service reliability to include security-by-design principles necessary to enable 5G to achieve its promise. 5G trustworthiness highlights the importance of embedding security capabilities from the very beginning while the 5G architecture is being defined and standardized. Security requirements need to overlay and permeate through the different layers of 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture within a risk-management framework that takes into account the evolving security-threats landscape. 5G presents a typical use-case of wireless communication and computer networking convergence, where 5G fundamental building blocks include components such as Software Defined Networks (SDN), Network Functions Virtualization (NFV) and the edge cloud. This convergence extends many of the security challenges and opportunities applicable to SDN/NFV and cloud to 5G networks. Thus, 5G security needs to consider additional security requirements (compared to previous generations) such as SDN controller security, hypervisor security, orchestrator security, cloud security, edge security, etc. At the same time, 5G networks offer security improvement opportunities that should be considered. Here, 5G architectural flexibility, programmability and complexity can be harnessed to improve resilience and reliability. The working group scope fundamentally addresses the following: •5G security considerations need to overlay and permeate through the different layers of the 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture including a risk management framework that takes into account the evolving security threats landscape. •5G exemplifies a use-case of heterogeneous access and computer networking convergence, which extends a unique set of security challenges and opportunities (e.g., related to SDN/NFV and edge cloud, etc.) to 5G networks. Similarly, 5G networks by design offer potential security benefits and opportunities through harnessing the architecture flexibility, programmability and complexity to improve its resilience and reliability. •The IEEE FNI security WG's roadmap framework follows a taxonomic structure, differentiating the 5G functional pillars and corresponding cybersecurity risks. As part of cross collaboration, the security working group will also look into the security issues associated with other roadmap working groups within the IEEE Future Network Initiative.
ISSN: 2770-7679
2023-06-09
Yang, Jeong, Rae Kim, Young, Earwood, Brandon.  2022.  A Study of Effectiveness and Problem Solving on Security Concepts with Model-Eliciting Activities. 2022 IEEE Frontiers in Education Conference (FIE). :1—9.
Security is a critical aspect in the process of designing, developing, and testing software systems. Due to the increasing need for security-related skills within software systems, there is a growing demand for these skills to be taught in computer science. A series of security modules was developed not only to meet the demand but also to assess the impact of these modules on teaching critical cyber security topics in computer science courses. This full paper in the innovative practice category presents the outcomes of six security modules in a freshman-level course at two institutions. The study adopts a Model-Eliciting Activity (MEA) as a project for students to demonstrate an understanding of the security concepts. Two experimental studies were conducted: 1) Teaching effectiveness of implementing cyber security modules and MEA project, 2) Students’ experiences in conceptual modeling tasks in problem-solving. In measuring the effectiveness of teaching security concepts with the MEA project, students’ performance, attitudes, and interests as well as the instructor’s effectiveness were assessed. For the conceptual modeling tasks in problem-solving, the results of student outcomes were analyzed. After implementing the security modules with the MEA project, students showed a great understanding of cyber security concepts and an increased interest in broader computer science concepts. The instructor’s beliefs about teaching, learning, and assessment shifted from teacher-centered to student-centered during their experience with the security modules and MEA project. Although 64.29% of students’ solutions do not seem suitable for real-world implementation, 76.9% of the developed solutions showed a sufficient degree of creativity.
2023-03-17
Mohammadi, Ali, Badewa, Oluwaseun A., Chulaee, Yaser, Ionel, Dan M., Essakiappan, Somasundaram, Manjrekar, Madhav.  2022.  Direct-Drive Wind Generator Concept with Non-Rare-Earth PM Flux Intensifying Stator and Reluctance Outer Rotor. 2022 11th International Conference on Renewable Energy Research and Application (ICRERA). :582–587.
This paper proposes a novel concept for an electric generator in which both ac windings and permanent magnets (PMs) are placed in the stator. Concentrated windings with a special pattern and phase coils placed in separate slots are employed. The PMs are positioned in a spoke-type field concentrating arrangement, which provides high flux intensification and enables the use of lower remanence and energy non-rare earth magnets. The rotor is exterior to the stator and has a simple and robust reluctance-type configuration without any active electromagnetic excitation components. The principle of operation is introduced based on the concept of virtual work with closed-form analytical airgap flux density distributions. Initial and parametric design studies were performed using electromagnetic FEA for a 3MW direct-drive wind turbine generator employing PMs of different magnetic remanence and specific energy. Results include indices for the goodness of excitation and the goodness of the electric machine designs; loss; and efficiency estimations, indicating that performance comparable to PM synchronous designs employing expensive and critical supply rare-earth PMs may be achieved with non-rare earth PMs using the proposed configuration.
ISSN: 2572-6013
2022-05-05
Mohammmed, Ahmed A, Elbasi, Ersin, Alsaydia, Omar Mowaffak.  2021.  An Adaptive Robust Semi-blind Watermarking in Transform Domain Using Canny Edge Detection Technique. 2021 44th International Conference on Telecommunications and Signal Processing (TSP). :10—14.
Digital watermarking is the multimedia leading security protection as it permanently escorts the digital content. Image copyright protection is becoming more anxious as the new 5G technology emerged. Protecting images with a robust scheme without distorting them is the main trade-off in digital watermarking. In this paper, a watermarking scheme based on discrete cosine transform (DCT) and singular value decomposition (SVD) using canny edge detector technique is proposed. A binary encrypted watermark is reshaped into a vector and inserted into the edge detected vector from the diagonal matrix of the SVD of DCT DC and low-frequency coefficients. Watermark insertion is performed by using an edge-tracing mechanism. The scheme is evaluated using the Peak Signal to Noise Ratio (PSNR) and Normalized Correlation (NC). Attained results are competitive when compared to present works in the field. Results show that the PSNR values vary from 51 dB to 55 dB.