Biblio
Data privacy has been an important area of research in recent years. Dataset often consists of sensitive data fields, exposure of which may jeopardize interests of individuals associated with the data. In order to resolve this issue, privacy techniques can be used to hinder the identification of a person through anonymization of the sensitive data in the dataset to protect sensitive information, while the anonymized dataset can be used by the third parties for analysis purposes without obstruction. In this research, we investigated a privacy technique, k-anonymity for different values of on different number columns of the dataset. Next, the information loss due to k-anonymity is computed. The anonymized files go through the classification process by some machine-learning algorithms i.e., Naive Bayes, J48 and neural network in order to check a balance between data anonymity and data utility. Based on the classification accuracy, the optimal values of and are obtained, and thus, the optimal and can be used for k-anonymity algorithm to anonymize optimal number of columns of the dataset.
Zigbee network security relies on symmetric cryptography based on a pre-shared secret. In the current Zigbee protocol, the network coordinator creates a network key while establishing a network. The coordinator then shares the network key securely, encrypted under the pre-shared secret, with devices joining the network to ensure the security of future communications among devices through the network key. The pre-shared secret, therefore, needs to be installed in millions or more devices prior to deployment, and thus will be inevitably leaked, enabling attackers to compromise the confidentiality and integrity of the network. To improve the security of Zigbee networks, we propose a new certificate-less Zigbee joining protocol that leverages low-cost public-key primitives. The new protocol has two components. The first is to integrate Elliptic Curve Diffie-Hellman key exchange into the existing association request/response messages, and to use this key both for link-to-link communication and for encryption of the network key to enhance privacy of user devices. The second is to improve the security of the installation code, a new joining method introduced in Zigbee 3.0 for enhanced security, by using public key encryption. We analyze the security of our proposed protocol using the formal verification methods provided by ProVerif, and evaluate the efficiency and effectiveness of our solution with a prototype built with open source software and hardware stack. The new protocol does not introduce extra messages and the overhead is as lows as 3.8% on average for the join procedure.
We present ClearTrack, a system that tracks meta-data for each primitive value in Java programs to detect and nullify a range of vulnerabilities such as integer overflow/underflow and SQL/command injection vulnerabilities. Contributions include new techniques for eliminating false positives associated with benign integer overflows and underflows, new metadata-aware techniques for detecting and nullifying SQL/command command injection attacks, and results from an independent evaluation team. These results show that 1) ClearTrack operates successfully on Java programs comprising hundreds of thousands of lines of code (including instrumented jar files and Java system libraries, the majority of the applications comprise over 3 million lines of code), 2) because of computations such as cryptography and hash table calculations, these applications perform millions of benign integer overflows and underflows, and 3) ClearTrack successfully detects and nullifies all tested integer overflow and underflow and SQL/command injection vulnerabilities in the benchmark applications.
This paper has firstly introduced big data services and cloud computing model based on different process forms, and analyzed the authentication technology and security services of the existing big data to understand their processing characteristics. Operation principles and complexity of the big data services and cloud computing have also been studied, and summary about their suitable environment and pros and cons have been made. Based on the Cloud Computing, the author has put forward the Model of Big Data Cloud Computing based on Extended Subjective Logic (MBDCC-ESL), which has introduced Jφsang's subjective logic to test the data credibility and expanded it to solve the problem of the trustworthiness of big data in the cloud computing environment. Simulation results show that the model works pretty well.
We consider different models of malicious multiple access channels, especially for binary adder channel and for A-channel, and show how they can be used for the reformulation of digital fingerprinting coding problems. In particular, we propose a new model of multimedia fingerprinting coding. In the new model, not only zeroes and plus/minus ones but arbitrary coefficients of linear combinations of noise-like signals for forming watermarks (digital fingerprints) can be used. This modification allows dramatically increase the possible number of users with the property that if t or less malicious users create a forge digital fingerprint then a dealer of the system can find all of them with zero-error probability. We show how arisen problems are related to the compressed sensing problem.
Defects in infrastructure as code (IaC) scripts can have serious
consequences, for example, creating large-scale system outages. A
taxonomy of IaC defects can be useful for understanding the nature
of defects, and identifying activities needed to fix and prevent
defects in IaC scripts. The goal of this paper is to help practitioners
improve the quality of infrastructure as code (IaC) scripts by developing
a defect taxonomy for IaC scripts through qualitative analysis.
We develop a taxonomy of IaC defects by applying qualitative analysis
on 1,448 defect-related commits collected from open source
software (OSS) repositories of the Openstack organization. We conduct
a survey with 66 practitioners to assess if they agree with the
identified defect categories included in our taxonomy. We quantify
the frequency of identified defect categories by analyzing 80,425
commits collected from 291 OSS repositories spanning across 2005
to 2019.
Our defect taxonomy for IaC consists of eight categories, including
a category specific to IaC called idempotency (i.e., defects that
lead to incorrect system provisioning when the same IaC script is
executed multiple times). We observe the surveyed 66 practitioners
to agree most with idempotency. The most frequent defect category
is configuration data i.e., providing erroneous configuration data
in IaC scripts. Our taxonomy and the quantified frequency of the
defect categories may help in advancing the science of IaC script
quality.
Humans are majorly identified as the weakest link in cybersecurity. Tertiary institution students undergo lot of cybersecurity issues due to their constant Internet exposure, however there is a lack in literature with regards to tertiary institution students' cybersecurity behaviors. This research aimed at linking the factors responsible for tertiary institutions students' cybersecurity behavior, via validated cybersecurity factors, Perceived Vulnerability (PV); Perceived Barriers (PBr); Perceived Severity (PS); Security Self-Efficacy (SSE); Response Efficacy (RE); Cues to Action (CA); Peer Behavior (PBhv); Computer Skills (CS); Internet Skills (IS); Prior Experience with Computer Security Practices (PE); Perceived Benefits (PBnf); Familiarity with Cyber-Threats (FCT), thus exploring the relationship between the factors and the students' Cybersecurity Behaviors (CSB). A cross-sectional online survey was used to gather data from 450 undergraduate and postgraduate students from tertiary institutions within Klang Valley, Malaysia. Correlation Analysis was used to find the relationships existing among the cybersecurity behavioral factors via SPSS version 25. Results indicate that all factors were significantly related to the cybersecurity behaviors of the students apart from Perceived Severity. Practically, the study instigates the need for more cybersecurity training and practices in the tertiary institutions.
The regularity of devastating cyber-attacks has made cybersecurity a grand societal challenge. Many cybersecurity professionals are closely examining the international Dark Web to proactively pinpoint potential cyber threats. Despite its potential, the Dark Web contains hundreds of thousands of non-English posts. While machine translation is the prevailing approach to process non-English text, applying MT on hacker forum text results in mistranslations. In this study, we draw upon Long-Short Term Memory (LSTM), Cross-Lingual Knowledge Transfer (CLKT), and Generative Adversarial Networks (GANs) principles to design a novel Adversarial CLKT (A-CLKT) approach. A-CLKT operates on untranslated text to retain the original semantics of the language and leverages the collective knowledge about cyber threats across languages to create a language invariant representation without any manual feature engineering or external resources. Three experiments demonstrate how A-CLKT outperforms state-of-the-art machine learning, deep learning, and CLKT algorithms in identifying cyber-threats in French and Russian forums.