Biblio

Found 2705 results

Filters: First Letter Of Last Name is G  [Clear All Filters]
2021-02-23
Xia, H., Gao, N., Peng, J., Mo, J., Wang, J..  2020.  Binarized Attributed Network Embedding via Neural Networks. 2020 International Joint Conference on Neural Networks (IJCNN). :1—8.
Traditional attributed network embedding methods are designed to map structural and attribute information of networks jointly into a continuous Euclidean space, while recently a novel branch of them named binarized attributed network embedding has emerged to learn binary codes in Hamming space, aiming to save time and memory costs and to naturally fit node retrieval task. However, current binarized attributed network embedding methods are scarce and mostly ignore the local attribute similarity between each pair of nodes. Besides, none of them attempt to control the independency of each dimension(bit) of the learned binary representation vectors. As existing methods still need improving, we propose an unsupervised Neural-based Binarized Attributed Network Embedding (NBANE) approach. Firstly, we inherit the Weisfeiler-Lehman proximity matrix from predecessors to aggregate high-order features for each node. Secondly, we feed the aggregated features into an autoencoder with the attribute similarity penalizing term and the orthogonality term to make further dimension reduction. To solve the problem of integer optimization we adopt the relaxation-quantization method during the process of training neural networks. Empirically, we evaluate the performance of NBANE through node classification and clustering tasks on three real-world datasets and study a case on fast retrieval in academic networks. Our method achieves better performance over state- of-the-art baselines methods of various types.
2021-03-01
D’Alterio, P., Garibaldi, J. M., John, R. I..  2020.  Constrained Interval Type-2 Fuzzy Classification Systems for Explainable AI (XAI). 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.
In recent year, there has been a growing need for intelligent systems that not only are able to provide reliable classifications but can also produce explanations for the decisions they make. The demand for increased explainability has led to the emergence of explainable artificial intelligence (XAI) as a specific research field. In this context, fuzzy logic systems represent a promising tool thanks to their inherently interpretable structure. The use of a rule-base and linguistic terms, in fact, have allowed researchers to create models that are able to produce explanations in natural language for each of the classifications they make. So far, however, designing systems that make use of interval type-2 (IT2) fuzzy logic and also give explanations for their outputs has been very challenging, partially due to the presence of the type-reduction step. In this paper, it will be shown how constrained interval type-2 (CIT2) fuzzy sets represent a valid alternative to conventional interval type-2 sets in order to address this issue. Through the analysis of two case studies from the medical domain, it is shown how explainable CIT2 classifiers are produced. These systems can explain which rules contributed to the creation of each of the endpoints of the output interval centroid, while showing (in these examples) the same level of accuracy as their IT2 counterpart.
2021-03-29
Grochol, D., Sekanina, L..  2020.  Evolutionary Design of Hash Functions for IPv6 Network Flow Hashing. 2020 IEEE Congress on Evolutionary Computation (CEC). :1–8.
Fast and high-quality network flow hashing is an essential operation in many high-speed network systems such as network monitoring probes. We propose a multi-objective evolutionary design method capable of evolving hash functions for IPv4 and IPv6 flow hashing. Our approach combines Cartesian genetic programming (CGP) with Non-dominated sorting genetic algorithm II (NSGA-II) and aims to optimize not only the quality of hashing, but also the execution time of the hash function. The evolved hash functions are evaluated on real data sets collected in computer network and compared against other evolved and conventionally created hash functions.
2021-04-27
Ma, C., Wang, L., Gai, C., Yang, D., Zhang, P., Zhang, H., Li, C..  2020.  Frequency Security Assessment for Receiving-end System Based on Deep Learning Method. 2020 IEEE/IAS Industrial and Commercial Power System Asia (I CPS Asia). :831–836.
For hours-ahead assessment of power systems with a high penetration level of renewable generation, a large number of uncertain scenarios should be checked to ensure the frequency security of the system after the severe power disturbance following HVDC blocking. In this situation, the full time-domain simulation is unsuitable as a result of the heavy calculation burden. To fulfill the quick assessment of the frequency security, the online frequency security assessment framework based on deep learning is proposed in this paper. The Deep Belief Network (DBN) method is used to establish the framework. The sample generation method is researched to generate representative samples for the purposed of higher assessment accuracy. A large-scale AC-DC interconnected power grid is adopted to verify the validity of the proposed assessment method.
2021-03-22
Penugonda, S., Yong, S., Gao, A., Cai, K., Sen, B., Fan, J..  2020.  Generic Modeling of Differential Striplines Using Machine Learning Based Regression Analysis. 2020 IEEE International Symposium on Electromagnetic Compatibility Signal/Power Integrity (EMCSI). :226–230.
In this paper, a generic model for a differential stripline is created using machine learning (ML) based regression analysis. A recursive approach of creating various inputs is adapted instead of traditional design of experiments (DoE) approach. This leads to reduction of number of simulations as well as control the data points required for performing simulations. The generic model is developed using 48 simulations. It is comparable to the linear regression model, which is obtained using 1152 simulations. Additionally, a tabular W-element model of a differential stripline is used to take into consideration the frequency-dependent dielectric loss. In order to demonstrate the expandability of this approach, the methodology was applied to two differential pairs of striplines in the frequency range of 10 MHz to 20 GHz.
2021-03-01
Tan, R., Khan, N., Guan, L..  2020.  Locality Guided Neural Networks for Explainable Artificial Intelligence. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.
In current deep network architectures, deeper layers in networks tend to contain hundreds of independent neurons which makes it hard for humans to understand how they interact with each other. By organizing the neurons by correlation, humans can observe how clusters of neighbouring neurons interact with each other. In this paper, we propose a novel algorithm for back propagation, called Locality Guided Neural Network (LGNN) for training networks that preserves locality between neighbouring neurons within each layer of a deep network. Heavily motivated by Self-Organizing Map (SOM), the goal is to enforce a local topology on each layer of a deep network such that neighbouring neurons are highly correlated with each other. This method contributes to the domain of Explainable Artificial Intelligence (XAI), which aims to alleviate the black-box nature of current AI methods and make them understandable by humans. Our method aims to achieve XAI in deep learning without changing the structure of current models nor requiring any post processing. This paper focuses on Convolutional Neural Networks (CNNs), but can theoretically be applied to any type of deep learning architecture. In our experiments, we train various VGG and Wide ResNet (WRN) networks for image classification on CIFAR100. In depth analyses presenting both qualitative and quantitative results demonstrate that our method is capable of enforcing a topology on each layer while achieving a small increase in classification accuracy.
2021-09-30
Zhou, Jun, Li, Mengquan, Guo, Pengxing, Liu, Weichen.  2020.  Mitigation of Tampering Attacks for MR-Based Thermal Sensing in Optical NoCs. 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :554–559.
As an emerging role in on-chip communication, the optical networks-on-chip (ONoCs) can provide ultra-high bandwidth, low latency and low power dissipation for the data transfer. However, the thermo-optic effects of the photonic devices have a great impact on the operating performance and reliability of ONoCs, where the thermal-aware control is used to alleviate it. Furthermore, the temperature-sensitive ONoCs are prone to be attacked by the hardware Trojans (HTs) covertly embedded in the integrated circuits (ICs) from the malicious third-party components, leading to performance degradation, denial of service (DoS), or even permanent damages. In this paper, we focus on the tampering attacks on optical sampling during the thermal sensing process in ONoCs. Corresponding approaches are proposed to mitigate the negative impacts from HT attacks. Evaluation results indicate that our approach can significantly enhance the hardware security of thermal sensing for ONoC with trivial overheads of up to 3.06% and 2.6% in average latency and energy consumption, respectively.
2021-02-03
Velaora, M., Roy, R. van, Guéna, F..  2020.  ARtect, an augmented reality educational prototype for architectural design. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :110—115.

ARtect is an Augmented Reality application developed with Unity 3D, which envisions an educational interactive and immersive tool for architects, designers, researchers, and artists. This digital instrument renders the competency to visualize custom-made 3D models and 2D graphics in interior and exterior environments. The user-friendly interface offers an accurate insight before the materialization of any architectural project, enabling evaluation of the design proposal. This practice could be integrated into learning architectural design process, saving resources of printed drawings, and 3D carton models during several stages of spatial conception.

2021-01-25
Guri, M..  2020.  CD-LEAK: Leaking Secrets from Audioless Air-Gapped Computers Using Covert Acoustic Signals from CD/DVD Drives. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :808—816.

Air-gapped networks are isolated from the Internet, since they store and process sensitive information. It has been shown that attackers can exfiltrate data from air-gapped networks by sending acoustic signals generated by computer speakers, however this type of covert channel relies on the existence of loudspeakers in the air-gapped environment. In this paper, we present CD-LEAK - a novel acoustic covert channel that works in constrained environments where loudspeakers are not available to the attacker. Malware installed on a compromised computer can maliciously generate acoustic signals via the optical CD/DVD drives. Binary information can then be modulated over the acoustic signals and be picked up by a nearby Internet connected receiver (e.g., a workstation, hidden microphone, smartphone, laptop, etc.). We examine CD/DVD drives and discuss their acoustical characteristics. We also present signal generation and detection, and data modulation and demodulation algorithms. Based on our proposed method, we developed a transmitter and receiver for PCs and smartphones, and provide the design and implementation details. We examine the channel and evaluate it on various optical drives. We also provide a set of countermeasures against this threat - which has been overlooked.

2021-05-25
Bosio, Alberto, Canal, Ramon, Di Carlo, Stefano, Gizopoulos, Dimitris, Savino, Alessandro.  2020.  Cross-Layer Soft-Error Resilience Analysis of Computing Systems. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :79—79.
In a world with computation at the epicenter of every activity, computing systems must be highly resilient to errors even if miniaturization makes the underlying hardware unreliable. Techniques able to guarantee high reliability are associated to high costs. Early resilience analysis has the potential to support informed design decisions to maximize system-level reliability while minimizing the associated costs. This tutorial focuses on early cross-layer (hardware and software) resilience analysis considering the full computing continuum (from IoT/CPS to HPC applications) with emphasis on soft errors.
2021-04-09
Lin, T., Shi, Y., Shu, N., Cheng, D., Hong, X., Song, J., Gwee, B. H..  2020.  Deep Learning-Based Image Analysis Framework for Hardware Assurance of Digital Integrated Circuits. 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). :1—6.
We propose an Artificial Intelligence (AI)/Deep Learning (DL)-based image analysis framework for hardware assurance of digital integrated circuits (ICs). Our aim is to examine and verify various hardware information from analyzing the Scanning Electron Microscope (SEM) images of an IC. In our proposed framework, we apply DL-based methods at all essential steps of the analysis. To the best of our knowledge, this is the first such framework that makes heavy use of DL-based methods at all essential analysis steps. Further, to reduce time and effort required in model re-training, we propose and demonstrate various automated or semi-automated training data preparation methods and demonstrate the effectiveness of using synthetic data to train a model. By applying our proposed framework to analyzing a set of SEM images of a large digital IC, we prove its efficacy. Our DL-based methods are fast, accurate, robust against noise, and can automate tasks that were previously performed mainly manually. Overall, we show that DL-based methods can largely increase the level of automation in hardware assurance of digital ICs and improve its accuracy.
2021-02-03
Martin, S., Parra, G., Cubillo, J., Quintana, B., Gil, R., Perez, C., Castro, M..  2020.  Design of an Augmented Reality System for Immersive Learning of Digital Electronic. 2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE). :1—6.

This article describes the development of two mobile applications for learning Digital Electronics. The first application is an interactive app for iOS where you can study the different digital circuits, and which will serve as the basis for the second: a game of questions in augmented reality.

2021-03-29
Pieper, P., Herdt, V., Große, D., Drechsler, R..  2020.  Dynamic Information Flow Tracking for Embedded Binaries using SystemC-based Virtual Prototypes. 2020 57th ACM/IEEE Design Automation Conference (DAC). :1—6.

Avoiding security vulnerabilities is very important for embedded systems. Dynamic Information Flow Tracking (DIFT) is a powerful technique to analyze SW with respect to security policies in order to protect the system against a broad range of security related exploits. However, existing DIFT approaches either do not exist for Virtual Prototypes (VPs) or fail to model complex hardware/software interactions.In this paper, we present a novel approach that enables early and accurate DIFT of binaries targeting embedded systems with custom peripherals. Leveraging the SystemC framework, our DIFT engine tracks accurate data flow information alongside the program execution to detect violations of security policies at run-time. We demonstrate the effectiveness and applicability of our approach by extensive experiments.

2021-01-22
Ayoade, G., Akbar, K. A., Sahoo, P., Gao, Y., Agarwal, A., Jee, K., Khan, L., Singhal, A..  2020.  Evolving Advanced Persistent Threat Detection using Provenance Graph and Metric Learning. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.

Advanced persistent threats (APT) have increased in recent times as a result of the rise in interest by nation-states and sophisticated corporations to obtain high profile information. Typically, APT attacks are more challenging to detect since they leverage zero-day attacks and common benign tools. Furthermore, these attack campaigns are often prolonged to evade detection. We leverage an approach that uses a provenance graph to obtain execution traces of host nodes in order to detect anomalous behavior. By using the provenance graph, we extract features that are then used to train an online adaptive metric learning. Online metric learning is a deep learning method that learns a function to minimize the separation between similar classes and maximizes the separation between dis-similar instances. We compare our approach with baseline models and we show our method outperforms the baseline models by increasing detection accuracy on average by 11.3 % and increases True positive rate (TPR) on average by 18.3 %.

2021-08-02
Longueira-Romerc, Ángel, Iglesias, Rosa, Gonzalez, David, Garitano, Iñaki.  2020.  How to Quantify the Security Level of Embedded Systems? A Taxonomy of Security Metrics 2020 IEEE 18th International Conference on Industrial Informatics (INDIN). 1:153—158.
Embedded Systems (ES) development has been historically focused on functionality rather than security, and today it still applies in many sectors and applications. However, there is an increasing number of security threats over ES, and a successful attack could have economical, physical or even human consequences, since many of them are used to control critical applications. A standardized and general accepted security testing framework is needed to provide guidance, common reporting forms and the possibility to compare the results along the time. This can be achieved by introducing security metrics into the evaluation or assessment process. If carefully designed and chosen, metrics could provide a quantitative, repeatable and reproducible value that would reflect the level of security protection of the ES. This paper analyzes the features that a good security metric should exhibit, introduces a taxonomy for classifying them, and finally, it carries out a literature survey on security metrics for the security evaluation of ES. In this review, more than 500 metrics were collected and analyzed. Then, they were reduced to 169 metrics that have the potential to be applied to ES security evaluation. As expected, the 77.5% of them is related exclusively to software, and only the 0.6% of them addresses exclusively hardware security. This work aims to lay the foundations for constructing a security evaluation methodology that uses metrics so as to quantify the security level of an ES.
2020-12-17
Sun, P., Garcia, L., Salles-Loustau, G., Zonouz, S..  2020.  Hybrid Firmware Analysis for Known Mobile and IoT Security Vulnerabilities. 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :373—384.

Mobile and IoT operating systems–and their ensuing software updates–are usually distributed as binary files. Given that these binary files are commonly closed source, users or businesses who want to assess the security of the software need to rely on reverse engineering. Further, verifying the correct application of the latest software patches in a given binary is an open problem. The regular application of software patches is a central pillar for improving mobile and IoT device security. This requires developers, integrators, and vendors to propagate patches to all affected devices in a timely and coordinated fashion. In practice, vendors follow different and sometimes improper security update agendas for both mobile and IoT products. Moreover, previous studies revealed the existence of a hidden patch gap: several vendors falsely reported that they patched vulnerabilities. Therefore, techniques to verify whether vulnerabilities have been patched or not in a given binary are essential. Deep learning approaches have shown to be promising for static binary analyses with respect to inferring binary similarity as well as vulnerability detection. However, these approaches fail to capture the dynamic behavior of these systems, and, as a result, they may inundate the analysis with false positives when performing vulnerability discovery in the wild. In particular, they cannot capture the fine-grained characteristics necessary to distinguish whether a vulnerability has been patched or not. In this paper, we present PATCHECKO, a vulnerability and patch presence detection framework for executable binaries. PATCHECKO relies on a hybrid, cross-platform binary code similarity analysis that combines deep learning-based static binary analysis with dynamic binary analysis. PATCHECKO does not require access to the source code of the target binary nor that of vulnerable functions. We evaluate PATCHECKO on the most recent Google Pixel 2 smartphone and the Android Things IoT firmware images, within which 25 known CVE vulnerabilities have been previously reported and patched. Our deep learning model shows a vulnerability detection accuracy of over 93%. We further prune the candidates found by the deep learning stage–which includes false positives–via dynamic binary analysis. Consequently, PATCHECKO successfully identifies the correct matches among the candidate functions in the top 3 ranked outcomes 100% of the time. Furthermore, PATCHECKO's differential engine distinguishes between functions that are still vulnerable and those that are patched with an accuracy of 96%.

2021-05-26
Ghosh, Bedatrayee, Parimi, Priyanka, Rout, Rashmi Ranjan.  2020.  Improved Attribute-Based Encryption Scheme in Fog Computing Environment for Healthcare Systems. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.

In today's smart healthcare system, medical records of patients are exposed to a large number of users for various purposes, from monitoring the patients' health to data analysis. Preserving the privacy of a patient has become an important and challenging issue. outsourced Ciphertext-Policy Attribute-Based Encryption (CP-ABE) provides a solution for the data sharing and privacy preservation problem in the healthcare system in fog environment. However, the high computational cost in case of frequent attribute updates renders it infeasible for providing access control in healthcare systems. In this paper, we propose an efficient method to overcome the frequent attribute update problem of outsourced CP-ABE. In our proposed approach, we generate two keys for each user (a static key and a dynamic key) based on the constant and changing attributes of the users. Therefore, in case of an attribute change for a user, only the dynamic key is updated. Also, the key update is done at the fog nodes without compromising the security of the system. Thus, both the communication and the computational overhead associated with the key update in the outsourced CP-ABE scheme are reduced, making it an ideal solution for data access control in healthcare systems. The efficacy of our proposed approach is shown through theoretical analysis and experimentation.

2021-07-08
Chandavarkar, B. R., Gadagkar, Akhilraj V..  2020.  Mitigating Localization and Neighbour Spoofing Attacks in Underwater Sensor Networks. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—5.
The location information of a node is one of the essential attributes used in most underwater communication routing algorithms to identify a candidate forwarding node by any of the sources. The exact location information of a node exchanged with its neighbours' in plain text and the absence of node authentication results in some of the attacks such as Sybil attack, Blackhole attack, and Wormhole attack. Moreover, the severe consequence of these attacks is Denial of Service (DoS), poor network performance, reduced network lifetime, etc. This paper proposes an anti-Spoof (a-Spoof) algorithm for mitigating localization and neighbour spoofing attacks in UASN. a-Spoof uses three pre-shared symmetric keys to share the location. Additionally, location integrity provided through the hash function. Further, the performance of a-Spoof demonstrated through its implementation in UnetStack with reference to end-to-end packet delay and the number of hops.
2021-05-05
Hasan, Tooba, Adnan, Akhunzada, Giannetsos, Thanassis, Malik, Jahanzaib.  2020.  Orchestrating SDN Control Plane towards Enhanced IoT Security. 2020 6th IEEE Conference on Network Softwarization (NetSoft). :457—464.

The Internet of Things (IoT) is rapidly evolving, while introducing several new challenges regarding security, resilience and operational assurance. In the face of an increasing attack landscape, it is necessary to cater for the provision of efficient mechanisms to collectively detect sophisticated malware resulting in undesirable (run-time) device and network modifications. This is not an easy task considering the dynamic and heterogeneous nature of IoT environments; i.e., different operating systems, varied connected networks and a wide gamut of underlying protocols and devices. Malicious IoT nodes or gateways can potentially lead to the compromise of the whole IoT network infrastructure. On the other hand, the SDN control plane has the capability to be orchestrated towards providing enhanced security services to all layers of the IoT networking stack. In this paper, we propose an SDN-enabled control plane based orchestration that leverages emerging Long Short-Term Memory (LSTM) classification models; a Deep Learning (DL) based architecture to combat malicious IoT nodes. It is a first step towards a new line of security mechanisms that enables the provision of scalable AI-based intrusion detection focusing on the operational assurance of only those specific, critical infrastructure components,thus, allowing for a much more efficient security solution. The proposed mechanism has been evaluated with current state of the art datasets (i.e., N\_BaIoT 2018) using standard performance evaluation metrics. Our preliminary results show an outstanding detection accuracy (i.e., 99.9%) which significantly outperforms state-of-the-art approaches. Based on our findings, we posit open issues and challenges, and discuss possible ways to address them, so that security does not hinder the deployment of intelligent IoT-based computing systems.

2021-01-11
Zhang, X., Chandramouli, K., Gabrijelcic, D., Zahariadis, T., Giunta, G..  2020.  Physical Security Detectors for Critical Infrastructures Against New-Age Threat of Drones and Human Intrusion. 2020 IEEE International Conference on Multimedia Expo Workshops (ICMEW). :1—4.

Modern critical infrastructures are increasingly turning into distributed, complex Cyber-Physical systems that need proactive protection and fast restoration to mitigate physical or cyber incidents or attacks. Addressing the need for early stage threat detection against physical intrusion, the paper presents two physical security sensors developed within the DEFENDER project for detecting the intrusion of drones and humans using video analytics. The continuous stream of media data obtained from the region of vulnerability and proximity is processed using Region based Fully Connected Neural Network deep-learning model. The novelty of the pro-posed system relies in the processing of multi-threaded media input streams for achieving real-time threat identification. The video analytics solution has been validated using NVIDIA GeForce GTX 1080 for drone detection and NVIDIA GeForce RTX 2070 Max-Q Design for detecting human intruders. The experimental test bed for the validation of the proposed system has been constructed to include environments and situations that are commonly faced by critical infrastructure operators such as the area of protection, tradeoff between angle of coverage against distance of coverage.

2021-08-17
Tang, Di, Gu, Jian, Han, Weijia, Ma, Xiao.  2020.  Quantitative Analysis on Source-Location Privacy for Wireless Sensor Networks. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :805—809.
Wireless sensor networks (WSNs) have been widely used in various applications for continuous event monitoring and detection. Dual to lack of a protected physical boundary, WSNs are vulnerable to trace-back attacks. The existing secure routing protocols are designed to protect source location privacy by increasing uncertainty of routing direction against statistic analysis on traffic flow. Nevertheless, the security has not been quantitatively measured and shown the direction of secure routing design. In this paper, we propose a theoretical security measurement scheme to define and analyze the quantitative amount of the information leakage from each eavesdropped message. Through the theoretical analysis, we identify vulnerabilities of existing routing algorithms and quantitatively compute the direction information leakage based on various routing strategy. The theoretical analysis results also indicate the direction for maximization of source location privacy.
2021-05-05
Block, Matthew, Barcaskey, Benjamin, Nimmo, Andrew, Alnaeli, Saleh, Gilbert, Ian, Altahat, Zaid.  2020.  Scalable Cloud-Based Tool to Empirically Detect Vulnerable Code Patterns in Large-Scale System. 2020 IEEE International Conference on Electro Information Technology (EIT). :588—592.
Open-source development is a well-accepted model by software development communities from both academia and industry. Many companies and corporations adopt and use open source systems daily as a core component in their business activities. One of the most important factors that will determine the success of this model is security. The security of software systems is a combination of source code quality, stability, and vulnerabilities. Software vulnerabilities can be introduced by many factors, some of which are the way that programmers write their programs, their background on security standards, and safe programming practices. This paper describes a cloud-based software tool developed by the authors that can help our computing communities in both academia and research to evaluate their software systems on the source code level to help them identify and detect some of the well-known source code vulnerability patterns that can cause security issues if maliciously exploited. The paper also presents an empirical study on the prevalence of vulnerable C/C++ coding patterns inside three large-scale open-source systems comprising more than 42 million lines of source code. The historical data for the studied systems is presented over five years to uncover some historical trends to highlight the changes in the system analyzed over time concerning the presence of some of the source code vulnerabilities patterns. The majority of results show the continued usage of known unsafe functions.
2021-07-28
Grimsman, David, Hespanha, João P., Marden, Jason R..  2020.  Stackelberg Equilibria for Two-Player Network Routing Games on Parallel Networks. 2020 American Control Conference (ACC). :5364—5369.
We consider a two-player zero-sum network routing game in which a router wants to maximize the amount of legitimate traffic that flows from a given source node to a destination node and an attacker wants to block as much legitimate traffic as possible by flooding the network with malicious traffic. We address scenarios with asymmetric information, in which the router must reveal its policy before the attacker decides how to distribute the malicious traffic among the network links, which is naturally modeled by the notion of Stackelberg equilibria. The paper focuses on parallel networks, and includes three main contributions: we show that computing the optimal attack policy against a given routing policy is an NP-hard problem; we establish conditions under which the Stackelberg equilibria lead to no regret; and we provide a metric that can be used to quantify how uncertainty about the attacker's capabilities limits the router's performance.
Mell, Peter, Gueye, Assane.  2020.  A Suite of Metrics for Calculating the Most Significant Security Relevant Software Flaw Types. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :511—516.
The Common Weakness Enumeration (CWE) is a prominent list of software weakness types. This list is used by vulnerability databases to describe the underlying security flaws within analyzed vulnerabilities. This linkage opens the possibility of using the analysis of software vulnerabilities to identify the most significant weaknesses that enable those vulnerabilities. We accomplish this through creating mashup views combining CWE weakness taxonomies with vulnerability analysis data. The resulting graphs have CWEs as nodes, edges derived from multiple CWE taxonomies, and nodes adorned with vulnerability analysis information (propagated from children to parents). Using these graphs, we develop a suite of metrics to identify the most significant weakness types (using the perspectives of frequency, impact, exploitability, and overall severity).
2020-12-14
Gu, Y., Liu, N..  2020.  An Adaptive Grey Wolf Algorithm Based on Population System and Bacterial Foraging Algorithm. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :744–748.
In this thesis, an modified algorithm for grey wolf optimization in swarm intelligence optimization algorithm is proposed, which is called an adaptive grey wolf algorithm (AdGWO) based on population system and bacterial foraging optimization algorithm (BFO). In view of the disadvantages of premature convergence and local optimization in solving complex optimization problems, the AdGWO algorithm uses a three-stage nonlinear change function to simulate the decreasing change of the convergence factor, and at the same time integrates the half elimination mechanism of the BFO. These improvements are more in line with the actual situation of natural wolves. The algorithm is based on 23 famous test functions and compared with GWO. Experimental results demonstrate that this algorithm is able to avoid sinking into the local optimum, has good accuracy and stability, is a more competitive algorithm.