Biblio

Found 4093 results

Filters: First Letter Of Last Name is L  [Clear All Filters]
2018-06-04
2018-05-14
2018-05-11
2018-05-15
2017-04-11
Christopher Theisen, Brendan Murphy, Kim Herzig, Laurie Williams.  Submitted.  Risk-Based Attack Surface Approximation: How Much Data is Enough? International Conference on Software Engineering (ICSE) Software Engineering in Practice (SEIP) 2017.

Proactive security reviews and test efforts are a necessary component of the software development lifecycle. Resource limitations often preclude reviewing the entire code
base. Making informed decisions on what code to review can improve a team’s ability to find and remove vulnerabilities. Risk-based attack surface approximation (RASA) is a technique that uses crash dump stack traces to predict what code may contain exploitable vulnerabilities. The goal of this research is to help software development teams prioritize security efforts by the efficient development of a risk-based attack surface approximation. We explore the use of RASA using Mozilla Firefox and Microsoft Windows stack traces from crash dumps. We create RASA at the file level for Firefox, in which the 15.8% of the files that were part of the approximation contained 73.6% of the vulnerabilities seen for the product. We also explore the effect of random sampling of crashes on the approximation, as it may be impractical for organizations to store and process every crash received. We find that 10-fold random sampling of crashes at a rate of 10% resulted in 3% less vulnerabilities identified than using the entire set of stack traces for Mozilla Firefox. Sampling crashes in Windows 8.1 at a rate of 40% resulted in insignificant differences in vulnerability and file coverage as compared to a rate of 100%.

2023-08-25
Hu, Yujiao, Jia, Qingmin, Liu, Hui, Zhou, Xiaomao, Lai, Huayao, Xie, Renchao.  2022.  3CL-Net: A Four-in-One Networking Paradigm for 6G System. 2022 5th International Conference on Hot Information-Centric Networking (HotICN). :132–136.
The 6G wireless communication networks are being studied to build a powerful networking system with global coverage, enhanced spectral/energy/cost efficiency, better intelligent level and security. This paper presents a four-in-one networking paradigm named 3CL-Net that would broaden and strengthen the capabilities of current networking by introducing ubiquitous computing, caching, and intelligence over the communication connection to build 6G-required capabilities. To evaluate the practicability of 3CL-Net, this paper designs a platform based on the 3CL-Net architecture. The platform adopts leader-followers structure that could support all functions of 3CL-Net, but separate missions of 3CL-Net into two parts. Moreover, this paper has implemented part of functions as a prototype, on which some experiments are carried out. The results demonstrate that 3CL-Net is potential to be a practical and effective network paradigm to meet future requirements, meanwhile, 3CL-Net could motivate designs of related platforms as well.
ISSN: 2831-4395
2023-04-14
Lai, Chengzhe, Wang, Yinzhen.  2022.  Achieving Efficient and Secure Query in Blockchain-based Traceability Systems. 2022 19th Annual International Conference on Privacy, Security & Trust (PST). :1–5.
With the rapid development of blockchain technology, it provides a new technical solution for secure storage of data and trusted computing. However, in the actual application of data traceability, blockchain technology has an obvious disadvantage: the large amount of data stored in the blockchain system will lead to a long response time for users to query data. Higher query delay severely restricts the development of block chain technology in the traceability system. In order to solve this problem, we propose an efficient, secure and low storage overhead blockchain query scheme. Specifically, we design an index structure independent of Merkle tree to support efficient intra-block query, and create new fields in the block header to optimize inter-block query. Compared with several existing schemes, our scheme ensures the security of data. Finally, we simulate and evaluate our proposed scheme. The results show that the proposed scheme has better execution efficiency while reducing additional overhead.
2023-03-31
Luo, Xingqi, Wang, Haotian, Dong, Jinyang, Zhang, Chuan, Wu, Tong.  2022.  Achieving Privacy-preserving Data Sharing for Dual Clouds. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :139–146.
With the advent of the era of Internet of Things (IoT), the increasing data volume leads to storage outsourcing as a new trend for enterprises and individuals. However, data breaches frequently occur, bringing significant challenges to the privacy protection of the outsourced data management system. There is an urgent need for efficient and secure data sharing schemes for the outsourced data management infrastructure, such as the cloud. Therefore, this paper designs a dual-server-based data sharing scheme with data privacy and high efficiency for the cloud, enabling the internal members to exchange their data efficiently and securely. Dual servers guarantee that none of the servers can get complete data independently by adopting secure two-party computation. In our proposed scheme, if the data is destroyed when sending it to the user, the data will not be restored. To prevent the malicious deletion, the data owner adds a random number to verify the identity during the uploading procedure. To ensure data security, the data is transmitted in ciphertext throughout the process by using searchable encryption. Finally, the black-box leakage analysis and theoretical performance evaluation demonstrate that our proposed data sharing scheme provides solid security and high efficiency in practice.
2023-05-19
Gombos, Gergő, Mouw, Maurice, Laki, Sándor, Papagianni, Chrysa, De Schepper, Koen.  2022.  Active Queue Management on the Tofino programmable switch: The (Dual)PI2 case. ICC 2022 - IEEE International Conference on Communications. :1685—1691.
The excess buffering of packets in network elements, also referred to as bufferbloat, results in high latency. Considering the requirements of traffic generated by video conferencing systems like Zoom, cloud rendered gaming platforms like Google Stadia, or even video streaming services such as Netflix, Amazon Prime and YouTube, timeliness of such traffic is important. Ensuring low latency to IP flows with a high throughput calls for the application of Active Queue Management (AQM) schemes. This introduces yet another problem as the co-existence of scalable and classic congestion controls leads to the starvation of classic TCP flows. Technologies such as Low Latency Low Loss Scalable Throughput (L4S) and the corresponding dual queue coupled AQM, DualPI2, provide a robust solution to these problems. However, their deployment on hardware targets such as programmable switches is quite challenging due to the complexity of algorithms and architectural constraints of switching ASICs. In this study, we provide proof of concept implementations of two AQMs that enable the co-existence of scalable and traditional TCP traffic, namely DualPI2 and the preceding single-queue PI2 AQM, on an Intel Tofino switching ASIC. Given the fixed operation of the switch’s traffic manager, we investigate to what extent it is possible to implement a fully RFC-compliant version of the two AQMs on the Tofino ASIC. The study shows that an appropriate split between control and data plane operations is required while we also exploit fixed functionality of the traffic manager to support such solutions.
2023-03-31
Li, Yunchen, Luo, Da.  2022.  Adversarial Audio Detection Method Based on Transformer. 2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE). :77–82.
Speech recognition technology has been applied to all aspects of our daily life, but it faces many security issues. One of the major threats is the adversarial audio examples, which may tamper the recognition results of the acoustic speech recognition system (ASR). In this paper, we propose an adversarial detection framework to detect adversarial audio examples. The method is based on the transformer self-attention mechanism. Spectrogram features are extracted from the audio and divided into patches. Position information are embedded and then fed into transformer encoder. Experimental results show that the method achieves good performance with the detection accuracy of above 96.5% under the white-box attacks and blackbox attacks, and noisy circumstances. Even when detecting adversarial examples generated by the unknown attacks, it also achieves satisfactory results.
2023-02-17
Wang, Ke, Zheng, Hao, Li, Yuan, Li, Jiajun, Louri, Ahmed.  2022.  AGAPE: Anomaly Detection with Generative Adversarial Network for Improved Performance, Energy, and Security in Manycore Systems. 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). :849–854.
The security of manycore systems has become increasingly critical. In system-on-chips (SoCs), Hardware Trojans (HTs) manipulate the functionalities of the routing components to saturate the on-chip network, degrade performance, and result in the leakage of sensitive data. Existing HT detection techniques, including runtime monitoring and state-of-the-art learning-based methods, are unable to timely and accurately identify the implanted HTs, due to the increasingly dynamic and complex nature of on-chip communication behaviors. We propose AGAPE, a novel Generative Adversarial Network (GAN)-based anomaly detection and mitigation method against HTs for secured on-chip communication. AGAPE learns the distribution of the multivariate time series of a number of NoC attributes captured by on-chip sensors under both HT-free and HT-infected working conditions. The proposed GAN can learn the potential latent interactions among different runtime attributes concurrently, accurately distinguish abnormal attacked situations from normal SoC behaviors, and identify the type and location of the implanted HTs. Using the detection results, we apply the most suitable protection techniques to each type of detected HTs instead of simply isolating the entire HT-infected router, with the aim to mitigate security threats as well as reducing performance loss. Simulation results show that AGAPE enhances the HT detection accuracy by 19%, reduces network latency and power consumption by 39% and 30%, respectively, as compared to state-of-the-art security designs.
2023-09-08
Lee, Jonghoon, Kim, Hyunjin, Park, Chulhee, Kim, Youngsoo, Park, Jong-Geun.  2022.  AI-based Network Security Enhancement for 5G Industrial Internet of Things Environments. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :971–975.
The recent 5G networks aim to provide higher speed, lower latency, and greater capacity; therefore, compared to the previous mobile networks, more advanced and intelligent network security is essential for 5G networks. To detect unknown and evolving 5G network intrusions, this paper presents an artificial intelligence (AI)-based network threat detection system to perform data labeling, data filtering, data preprocessing, and data learning for 5G network flow and security event data. The performance evaluations are first conducted on two well-known datasets-NSL-KDD and CICIDS 2017; then, the practical testing of proposed system is performed in 5G industrial IoT environments. To demonstrate detection against network threats in real 5G environments, this study utilizes the 5G model factory, which is downscaled to a real smart factory that comprises a number of 5G industrial IoT-based devices.
ISSN: 2162-1241
2023-06-22
Park, Soyoung, Kim, Jongseok, Lim, Younghoon, Seo, Euiseong.  2022.  Analysis and Mitigation of Data Sanitization Overhead in DAX File Systems. 2022 IEEE 40th International Conference on Computer Design (ICCD). :255–258.
A direct access (DAX) file system maximizes the benefit of persistent memory(PM)’s low latency through removing the page cache layer from the file system access paths. However, this paper reveals that data block allocation of the DAX file systems in common is significantly slower than that of conventional file systems because the DAX file systems require the zero-out operation for the newly allocated blocks to prevent the leakage of old data previously stored in the allocated data blocks. The retarded block allocation significantly affects the file write performance. In addition to this revelation, this paper proposes an off-critical-path data block sanitization scheme tailored for DAX file systems. The proposed scheme detaches the zero-out operation from the latency-critical I/O path and performs that of released data blocks in the background. The proposed scheme’s design principle is universally applicable to most DAX file systems. For evaluation, we implemented our approach in Ext4-DAX and XFS-DAX. Our evaluation showed that the proposed scheme reduces the append write latency by 36.8%, and improved the performance of FileBench’s fileserver workload by 30.4%, YCSB’s workload A on RocksDB by 3.3%, and the Redis-benchmark by 7.4% on average, respectively.
ISSN: 2576-6996
2023-06-09
L, Gururaj H, C, Soundarya B, V, Janhavi, H, Lakshmi, MJ, Prassan Kumar.  2022.  Analysis of Cyber Security Attacks using Kali Linux. 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). :1—6.
In the prevailing situation, the sports like economic, industrial, cultural, social, and governmental activities are carried out in the online world. Today's international is particularly dependent on the wireless era and protective these statistics from cyber-assaults is a hard hassle. The reason for cyber-assaults is to damage thieve the credentials. In a few other cases, cyber-attacks ought to have a navy or political functions. The damages are PC viruses, facts break, DDS, and exceptional attack vectors. To this surrender, various companies use diverse answers to prevent harm because of cyberattacks. Cyber safety follows actual-time data at the modern-day-day IT data. So, far, numerous techniques have proposed with the resource of researchers around the area to prevent cyber-attacks or lessen the harm due to them. The cause of this has a look at is to survey and comprehensively evaluate the usual advances supplied around cyber safety and to analyse the traumatic situations, weaknesses, and strengths of the proposed techniques. Different sorts of attacks are taken into consideration in element. In addition, evaluation of various cyber-attacks had been finished through the platform called Kali Linux. It is predicted that the complete assessment has a have a study furnished for college students, teachers, IT, and cyber safety researchers might be beneficial.
2023-01-13
Syed, Shameel, Khuhawar, Faheem, Talpur, Shahnawaz, Memon, Aftab Ahmed, Luque-Nieto, Miquel-Angel, Narejo, Sanam.  2022.  Analysis of Dynamic Host Control Protocol Implementation to Assess DoS Attacks. 2022 Global Conference on Wireless and Optical Technologies (GCWOT). :1—7.
Dynamic Host Control Protocol (DHCP) is a protocol which provides IP addresses and network configuration parameters to the hosts present in the network. This protocol is deployed in small, medium, and large size organizations which removes the burden from network administrator to manually assign network parameters to every host in the network for establishing communication. Every vendor who plans to incorporate DHCP service in its device follows the working flow defined in Request for Comments (RFC). DHCP Starvation and DHCP Flooding attack are Denial of Service (DoS) attacks to prevents provision of IP addresses by DHCP. Port Security and DHCP snooping are built-in security features which prevents these DoS attacks. However, novel techniques have been devised to bypass these security features which uses ARP and ICMP protocol to perform the attack. The purpose of this research is to analyze implementation of DHCP in multiple devices to verify the involvement of both ARP and ICMP in the address acquisition process of DHCP as per RFC and to validate the results of prior research which assumes ARP or ICMP are used by default in all of devices.
2022-12-01
Lee, H., Lim, H., Lee, B..  2022.  Analysis of EV charging load impact on distribution network using XAI technique. CIRED Porto Workshop 2022: E-mobility and power distribution systems. 2022:167—170.
In order to solve the problems that may arise from the negative impact of EV charging loads on the power distribution network, it is very important to predict the distribution network variability according to EV charging loads. If appropriate facility reinforcement or system operation is made through evaluation of the impact of EV charging load, it will be possible to prevent facility failure in advance and maintain the power quality at a certain level, enabling stable network operation. By analysing the degree of change in the predicted load according to the EV load characteristics through the load prediction model, it is possible to evaluate the influence of the distribution network according to the EV linkage. This paper aims to investigate the effect of EV charging load on voltage stability, power loss, reliability index and economic loss of distribution network. For this, we transformed univariate time series of EV charging data into a multivariate time series using feature engineering techniques. Then, time series forecast models are trained based on the multivariate dataset. Finally, XAI techniques such as LIME and SHAP are applied to the models to obtain the feature importance analysis results.
2023-01-13
Li, Baofeng, Zhai, Feng, Fu, Yilun, Xu, Bin.  2022.  Analysis of Network Security Protection of Smart Energy Meter. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :718–722.
Design a new generation of smart power meter components, build a smart power network, implement power meter safety protection, and complete smart power meter network security protection. The new generation of smart electric energy meters mainly complete legal measurement, safety fee control, communication, control, calculation, monitoring, etc. The smart power utilization structure network consists of the master station server, front-end processor, cryptographic machine and master station to form a master station management system. Through data collection and analysis, the establishment of intelligent energy dispatching operation, provides effective energy-saving policy algorithms and strategies, and realizes energy-smart electricity use manage. The safety protection architecture of the electric energy meter is designed from the aspects of its own safety, full-scenario application safety, and safety management. Own security protection consists of hardware security protection and software security protection. The full-scene application security protection system includes four parts: boundary security, data security, password security, and security monitoring. Security management mainly provides application security management strategies and security responsibility division strategies. The construction of the intelligent electric energy meter network system lays the foundation for network security protection.
2023-09-08
Shi, Kun, Chen, Songsong, Li, Dezhi, Tian, Ke, Feng, Meiling.  2022.  Analysis of the Optimized KNN Algorithm for the Data Security of DR Service. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). :1634–1637.
The data of large-scale distributed demand-side iot devices are gradually migrated to the cloud. This cloud deployment mode makes it convenient for IoT devices to participate in the interaction between supply and demand, and at the same time exposes various vulnerabilities of IoT devices to the Internet, which can be easily accessed and manipulated by hackers to launch large-scale DDoS attacks. As an easy-to-understand supervised learning classification algorithm, KNN can obtain more accurate classification results without too many adjustment parameters, and has achieved many research achievements in the field of DDoS detection. However, in the face of high-dimensional data, this method has high operation cost, high cost and not practical. Aiming at this disadvantage, this chapter explores the potential of classical KNN algorithm in data storage structure, K-nearest neighbor search and hyperparameter optimization, and proposes an improved KNN algorithm for DDoS attack detection of demand-side IoT devices.
2023-08-18
Li, Shijie, Liu, Junjiao, Pan, Zhiwen, Lv, Shichao, Si, Shuaizong, Sun, Limin.  2022.  Anomaly Detection based on Robust Spatial-temporal Modeling for Industrial Control Systems. 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS). :355—363.
Industrial Control Systems (ICS) are increasingly facing the threat of False Data Injection (FDI) attacks. As an emerging intrusion detection scheme for ICS, process-based Intrusion Detection Systems (IDS) can effectively detect the anomalies caused by FDI attacks. Specifically, such IDS establishes anomaly detection model which can describe the normal pattern of industrial processes, then perform real-time anomaly detection on industrial process data. However, this method suffers low detection accuracy due to the complexity and instability of industrial processes. That is, the process data inherently contains sophisticated nonlinear spatial-temporal correlations which are hard to be explicitly described by anomaly detection model. In addition, the noise and disturbance in process data prevent the IDS from distinguishing the real anomaly events. In this paper, we propose an Anomaly Detection approach based on Robust Spatial-temporal Modeling (AD-RoSM). Concretely, to explicitly describe the spatial-temporal correlations within the process data, a neural based state estimation model is proposed by utilizing 1D CNN for temporal modeling and multi-head self attention mechanism for spatial modeling. To perform robust anomaly detection in the presence of noise and disturbance, a composite anomaly discrimination model is designed so that the outputs of the state estimation model can be analyzed with a combination of threshold strategy and entropy-based strategy. We conducted extensive experiments on two benchmark ICS security datasets to demonstrate the effectiveness of our approach.
2023-08-24
Veeraiah, Vivek, Kumar, K Ranjit, Lalitha Kumari, P., Ahamad, Shahanawaj, Bansal, Rohit, Gupta, Ankur.  2022.  Application of Biometric System to Enhance the Security in Virtual World. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :719–723.
Virtual worlds was becoming increasingly popular in a variety of fields, including education, business, space exploration, and video games. Establishing the security of virtual worlds was becoming more critical as they become more widely used. Virtual users were identified using a behavioral biometric system. Improve the system's ability to identify objects by fusing scores from multiple sources. Identification was based on a review of user interactions in virtual environments and a comparison with previous recordings in the database. For behavioral biometric systems like the one described, it appears that score-level biometric fusion was a promising tool for improving system performance. As virtual worlds become more immersive, more people will want to participate in them, and more people will want to be able to interact with each other. Each region of the Meta-verse was given a glimpse of the current state of affairs and the trends to come. As hardware performance and institutional and public interest continue to improve, the Meta-verse's development is hampered by limitations like computational method limits and a lack of realized collaboration between virtual world stakeholders and developers alike. A major goal of the proposed research was to verify the accuracy of the biometric system to enhance the security in virtual world. In this study, the precision of the proposed work was compared to that of previous work.
2023-06-16
Yue, Zhengyu, Yao, Yuanzhi, Li, Weihai, Yu, Nenghai.  2022.  ATDD: Fine-Grained Assured Time-Sensitive Data Deletion Scheme in Cloud Storage. ICC 2022 - IEEE International Conference on Communications. :3448—3453.
With the rapid development of general cloud services, more and more individuals or collectives use cloud platforms to store data. Assured data deletion deserves investigation in cloud storage. In time-sensitive data storage scenarios, it is necessary for cloud platforms to automatically destroy data after the data owner-specified expiration time. Therefore, assured time-sensitive data deletion should be sought. In this paper, a fine-grained assured time-sensitive data deletion (ATDD) scheme in cloud storage is proposed by embedding the time trapdoor in Ciphertext-Policy Attribute-Based Encryption (CP-ABE). Time-sensitive data is self-destructed after the data owner-specified expiration time so that the authorized users cannot get access to the related data. In addition, a credential is returned to the data owner for data deletion verification. This proposed scheme provides solutions for fine-grained access control and verifiable data self-destruction. Detailed security and performance analysis demonstrate the security and the practicability of the proposed scheme.
2023-01-05
Ebrahimabadi, Mohammad, Younis, Mohamed, Lalouani, Wassila, Karimi, Naghmeh.  2022.  An Attack Resilient PUF-based Authentication Mechanism for Distributed Systems. 2022 35th International Conference on VLSI Design and 2022 21st International Conference on Embedded Systems (VLSID). :108–113.
In most PUF-based authentication schemes, a central server is usually engaged to verify the response of the device’s PUF to challenge bit-streams. However, the server availability may be intermittent in practice. To tackle such an issue, this paper proposes a new protocol for supporting distributed authentication while avoiding vulnerability to information leakage where CRPs could be retrieved from hacked devices and collectively used to model the PUF. The main idea is to provision for scrambling the challenge bit-stream in a way that is dependent on the verifier. The scrambling pattern varies per authentication round for each device and independently across devices. In essence, the scrambling function becomes node- and packetspecific and the response received by two verifiers of one device for the same challenge bit-stream could vary. Thus, neither the scrambling function can be reverted, nor the PUF can be modeled even by a collusive set of malicious nodes. The validation results using data of an FPGA-based implementation demonstrate the effectiveness of our approach in thwarting PUF modeling attacks by collusive actors. We also discuss the approach resiliency against impersonation, Sybil, and reverse engineering attacks.
2023-05-19
Chen, Yuhang, Long, Yue, Li, Tieshan.  2022.  Attacks Detection and Security Control Against False Data Injection Attacks Based on Interval Type-2 Fuzzy System. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1—6.
This paper is concered with the nonlinear cyber physical system (CPS) with uncertain parameters under false data injection (FDI) attacks. The interval type-2 (IT2) fuzzy model is utilized to approximate the nonlinear system, then the nonlinear system can be represented as a convex combination of linear systems. To detect the FDI attacks, a novel robust fuzzy extended state observer with H∞ preformance is proposed, where the fuzzy rules are utilized to the observer to estimate the FDI attacks. Utilizing the observation of the FDI attacks, a security control scheme is proposed in this paper, in which a compensator is designed to offset the FDI attacks. Simulation examples are given to illustrate the effecitveness of the proposed security scheme.
2023-06-22
Wang, Danni, Li, Sizhao.  2022.  Automated DDoS Attack Mitigation for Software Defined Network. 2022 IEEE 16th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :100–104.
Network security is a prominent topic that is gaining international attention. Distributed Denial of Service (DDoS) attack is often regarded as one of the most serious threats to network security. Software Defined Network (SDN) decouples the control plane from the data plane, which can meet various network requirements. But SDN can also become the object of DDoS attacks. This paper proposes an automated DDoS attack mitigation method that is based on the programmability of the Ryu controller and the features of the OpenFlow switch flow tables. The Mininet platform is used to simulate the whole process, from SDN traffic generation to using a K-Nearest Neighbor model for traffic classification, as well as identifying and mitigating DDoS attack. The packet counts of the victim's malicious traffic input port are significantly lower after the mitigation method is implemented than before the mitigation operation. The purpose of mitigating DDoS attack is successfully achieved.
ISSN: 2163-5056
2023-06-09
Qiang, Weizhong, Luo, Hao.  2022.  AutoSlicer: Automatic Program Partitioning for Securing Sensitive Data Based-on Data Dependency Analysis and Code Refactoring. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :239—247.
Legacy programs are normally monolithic (that is, all code runs in a single process and is not partitioned), and a bug in a program may result in the entire program being vulnerable and therefore untrusted. Program partitioning can be used to separate a program into multiple partitions, so as to isolate sensitive data or privileged operations. Manual program partitioning requires programmers to rewrite the entire source code, which is cumbersome, error-prone, and not generic. Automatic program partitioning tools can separate programs according to the dependency graph constructed based on data or programs. However, programmers still need to manually implement remote service interfaces for inter-partition communication. Therefore, in this paper, we propose AutoSlicer, whose purpose is to partition a program more automatically, so that the programmer is only required to annotate sensitive data. AutoSlicer constructs accurate data dependency graphs (DDGs) by enabling execution flow graphs, and the DDG-based partitioning algorithm can compute partition information based on sensitive annotations. In addition, the code refactoring toolchain can automatically transform the source code into sensitive and insensitive partitions that can be deployed on the remote procedure call framework. The experimental evaluation shows that AutoSlicer can effectively improve the accuracy (13%-27%) of program partitioning by enabling EFG, and separate real-world programs with a relatively smaller performance overhead (0.26%-9.42%).