Biblio

Found 4093 results

Filters: First Letter Of Last Name is L  [Clear All Filters]
2023-04-28
Lu, Chaofan.  2022.  Research on the technical application of artificial intelligence in network intrusion detection system. 2022 International Conference on Electronics and Devices, Computational Science (ICEDCS). :109–112.
Network intrusion detection technology has been a popular application technology for current network security, but the existing network intrusion detection technology in the application process, there are problems such as low detection efficiency, low detection accuracy and other poor detection performance. To solve the above problems, a new treatment combining artificial intelligence with network intrusion detection is proposed. Artificial intelligence-based network intrusion detection technology refers to the application of artificial intelligence techniques, such as: neural networks, neural algorithms, etc., to network intrusion detection, and the application of these artificial intelligence techniques makes the automatic detection of network intrusion detection models possible.
2023-09-08
Liu, Shaogang, Chen, Jiangli, Hong, Guihua, Cao, Lizhu, Wu, Ming.  2022.  Research on UAV Network System Security Risk Evaluation Oriented to Geographic Information Data. 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). :57–60.
With the advent of the Internet era, all walks of life in our country have undergone earth-shaking changes, especially the drone and geographic information industries, which have developed rapidly under the impetus of the Internet of Things era. However, with the continuous development of science and technology, the network structure has become more and more complex, and the types of network attacks have varied. UAV information security and geographic information data have appeared security risks on the network. These hidden dangers have contributed to the progress of the drone and geographic information industry. And development has caused a great negative impact. In this regard, this article will conduct research on the network security of UAV systems and geographic information data, which can effectively assess the network security risks of UAV systems, and propose several solutions to potential safety hazards to reduce UAV networks. Security risks and losses provide a reference for UAV system data security.
2023-05-12
Zhang, Chen, Wu, Zhouyang, Li, Xianghua, Liang, Jian, Jiang, Zhongyao, Luo, Ceheng, Wen, Fangjun, Wang, Guangda, Dai, Wei.  2022.  Resilience Assessment Method of Integrated Electricity and Gas System Based on Hetero-functional Graph Theory. 2022 2nd International Conference on Electrical Engineering and Control Science (IC2ECS). :34–39.
The resilience assessment of electric and gas networks gains importance due to increasing interdependencies caused by the coupling of gas-fired units. However, the gradually increasing scale of the integrated electricity and gas system (IEGS) poses a significant challenge to current assessment methods. The numerical analysis method is accurate but time-consuming, which may incur a significant computational cost in large-scale IEGS. Therefore, this paper proposes a resilience assessment method based on hetero-functional graph theory for IEGS to balance the accuracy with the computational complexity. In contrast to traditional graph theory, HFGT can effectively depict the coupled systems with inherent heterogeneity and can represent the structure of heterogeneous functional systems in a clear and unambiguous way. In addition, due to the advantages of modelling the system functionality, the effect of line-pack in the gas network on the system resilience is depicted more precisely in this paper. Simulation results on an IEGS with the IEEE 9-bus system and a 7-node gas system verify the effectiveness of the proposed method.
Song, Yanbo, Gao, Xianming, Li, Pengcheng, Yang, Chungang.  2022.  Resilience Network Controller Design for Multi-Domain SDN: A BDI-based Framework. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1–5.
Network attacks are becoming more intense and characterized by complexity and persistence. Mechanisms that ensure network resilience to faults and threats should be well provided. Different approaches have been proposed to network resilience; however, most of them rely on static policies, which is unsuitable for current complex network environments and real-time requirements. To address these issues, we present a Belief-Desire-Intention (BDI) based multi-agent resilience network controller coupled with blockchain. We first clarify the theory and platform of the BDI, then discuss how the BDI evaluates the network resilience. In addition, we present the architecture, workflow, and applications of the resilience network controller. Simulation results show that the resilience network controller can effectively detect and mitigate distributed denial of service attacks.
ISSN: 2577-2465
2023-06-16
Li, Bin, Fu, Yu, Wang, Kun.  2022.  A Review on Cloud Data Assured Deletion. 2022 Global Conference on Robotics, Artificial Intelligence and Information Technology (GCRAIT). :451—457.
At present, cloud service providers control the direct management rights of cloud data, and cloud data cannot be effectively and assured deleted, which may easily lead to security problems such as data residue and user privacy leakage. This paper analyzes the related research work of cloud data assured deletion in recent years from three aspects: encryption key deletion, multi-replica association deletion, and verifiable deletion. The advantages and disadvantages of various deletion schemes are analysed in detail, and finally the prospect of future research on assured deletion of cloud data is given.
2023-01-20
Cheng, Xi, Liang, Yafeng, Qiu, Jianhong, Zhao, XiaoLi, Ma, Lihong.  2022.  Risk Assessment Method of Microgrid System Based on Random Matrix Theory. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:705—709.
In view of the problems that the existing power grid risk assessment mainly depends on the data fusion of decision-making level, which has strong subjectivity and less effective information, this paper proposes a risk assessment method of microgrid system based on random matrix theory. Firstly, the time series data of multiple sensors are constructed into a high-dimensional matrix according to the different parameter types and nodes; Then, based on random matrix theory and sliding time window processing, the average spectral radius sequence is calculated to characterize the state of microgrid system. Finally, an example is given to verify the effectiveness of the method.
2023-03-31
Liu, Pengjuan, Ma, Jindou.  2022.  Rolling Bearing Fault Diagnosis based on Deep Belief Network. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :685–688.
In view of the characteristics that rolling bearing is prone to failure under actual working conditions, and it is difficult to classify the fault category and fault degree, the deep belief network is introduced to diagnose the rolling bearing fault. Firstly, principal component analysis is used to reduce the dimension of original input data and delete redundant input information. Then, the dimension reduced data are input into the deep belief network to extract the low dimensional fault feature representation, and the extracted features are input into the classifier for rolling bearing fault pattern recognition. Finally, the diagnosis effect of the proposed network is compared with the existing common shallow neural network. The simulation experiment is carried out through the bearing data in the United States.
2023-06-09
Wang, Jinwen, Li, Ao, Li, Haoran, Lu, Chenyang, Zhang, Ning.  2022.  RT-TEE: Real-time System Availability for Cyber-physical Systems using ARM TrustZone. 2022 IEEE Symposium on Security and Privacy (SP). :352—369.
Embedded devices are becoming increasingly pervasive in safety-critical systems of the emerging cyber-physical world. While trusted execution environments (TEEs), such as ARM TrustZone, have been widely deployed in mobile platforms, little attention has been given to deployment on real-time cyber-physical systems, which present a different set of challenges compared to mobile applications. For safety-critical cyber-physical systems, such as autonomous drones or automobiles, the current TEE deployment paradigm, which focuses only on confidentiality and integrity, is insufficient. Computation in these systems also needs to be completed in a timely manner (e.g., before the car hits a pedestrian), putting a much stronger emphasis on availability.To bridge this gap, we present RT-TEE, a real-time trusted execution environment. There are three key research challenges. First, RT-TEE bootstraps the ability to ensure availability using a minimal set of hardware primitives on commodity embedded platforms. Second, to balance real-time performance and scheduler complexity, we designed a policy-based event-driven hierarchical scheduler. Third, to mitigate the risks of having device drivers in the secure environment, we designed an I/O reference monitor that leverages software sandboxing and driver debloating to provide fine-grained access control on peripherals while minimizing the trusted computing base (TCB).We implemented prototypes on both ARMv8-A and ARMv8-M platforms. The system is tested on both synthetic tasks and real-life CPS applications. We evaluated rover and plane in simulation and quadcopter both in simulation and with a real drone.
2023-01-20
Park, Jee-Tae, Baek, Ui-Jun, Kim, Myung-Sup, Lee, Min-Seong, Shin, Chang-Yui.  2022.  Rule-based User Behavior Detection System for SaaS Application. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
SaaS is a cloud-based application service that allows users to use applications that work in a cloud environment. SaaS is a subscription type, and the service expenditure varies depending on the license, the number of users, and duration of use. For efficient network management, security and cost management, accurate detection of user behavior for SaaS applications is required. In this paper, we propose a rule-based traffic analysis method for the user behavior detection. We conduct comparative experiments with signature-based method by using the real SaaS application and demonstrate the validity of the proposed method.
2023-01-13
Liu, Xingye, Ampadu, Paul.  2022.  A Scalable Integrated DC/DC Converter with Enhanced Load Transient Response and Security for Emerging SoC Applications. 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS). :1–4.
In this paper we propose a novel integrated DC/DC converter featuring a single-input-multiple-output architecture for emerging System-on-Chip applications to improve load transient response and power side-channel security. The converter is able to provide multiple outputs ranging from 0.3V to 0.92V using a global 1V input. By using modularized circuit blocks, the converter can be extended to provide higher power or more outputs with minimal design complexity. Performance metrics including power efficiency and load transient response can be well maintained as well. Implemented in 32nm technology, single output efficiency can reach to 88% for the post layout models. By enabling delay blocks and circuits sharing, the Pearson correlation coefficient of input and output can be reduced to 0.1 under rekeying test. The reference voltage tracking speed is up to 31.95 V/μs and peak load step response is 53 mA/ns. Without capacitors, the converter consumes 2.85 mm2 for high power version and only 1.4 mm2 for the low power case.
Liu, Xingye, Ampadu, Paul.  2022.  A Scalable Single-Input-Multiple-Output DC/DC Converter with Enhanced Load Transient Response and Security for Low-Power SoCs. 2022 IEEE International Symposium on Circuits and Systems (ISCAS). :1497–1501.
This paper presents a scalable single-input-multiple-output DC/DC converter targeting load transient response and security improvement for low-power System-on-Chips (SoCs). A two-stage modular architecture is introduced to enable scalability. The shared switched-capacitor pre-charging circuits are implemented to improve load transient response and decouple correlations between inputs and outputs. The demo version of the converter has three identical outputs, each supporting 0.3V to 0.9V with a maximum load current of 150mA. Based on post-layout simulation results in 32nm CMOS process, the converter output provides 19.3V/μs reference tracking speed and 27mA/ns workload transitions with negligible voltage droops or spikes. No cross regulation is observed at any outputs with a worst-case voltage ripple of 68mV. Peak efficiency reaches 85.5% for each output. With variable delays added externally, the input-output correlations can change 10 times and for steady-state operation, such correlation factors are always kept below 0.05. The converter is also scaled to support 6 outputs with only 0.56mm2 more area and maintains same load transient response performance.
Luo, Xinyi, Xu, Zhuo, Xue, Kaiping, Jiang, Qiantong, Li, Ruidong, Wei, David.  2022.  ScalaCert: Scalability-Oriented PKI with Redactable Consortium Blockchain Enabled "On-Cert" Certificate Revocation. 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). :1236–1246.
As the voucher for identity, digital certificates and the public key infrastructure (PKI) system have always played a vital role to provide the authentication services. In recent years, with the increase in attacks on traditional centralized PKIs and the extensive deployment of blockchains, researchers have tried to establish blockchain-based secure decentralized PKIs and have made significant progress. Although blockchain enhances security, it brings new problems in scalability due to the inherent limitations of blockchain’s data structure and consensus mechanism, which become much severe for the massive access in the era of 5G and B5G. In this paper, we propose ScalaCert to mitigate the scalability problems of blockchain-based PKIs by utilizing redactable blockchain for "on-cert" revocation. Specifically, we utilize the redactable blockchain to record revocation information directly on the original certificate ("on-cert") and remove additional data structures such as CRL, significantly reducing storage overhead. Moreover, the combination of redactable and consortium blockchains brings a new kind of attack called deception of versions (DoV) attack. To defend against it, we design a random-block-node-check (RBNC) based freshness check mechanism. Security and performance analyses show that ScalaCert has sufficient security and effectively solves the scalability problem of the blockchain-based PKI system.
2023-03-31
Xu, Zichuan, Ren, Wenhao, Liang, Weifa, Xu, Wenzheng, Xia, Qiufen, Zhou, Pan, Li, Mingchu.  2022.  Schedule or Wait: Age-Minimization for IoT Big Data Processing in MEC via Online Learning. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications. :1809–1818.
The age of data (AoD) is identified as one of the most novel and important metrics to measure the quality of big data analytics for Internet-of-Things (IoT) applications. Meanwhile, mobile edge computing (MEC) is envisioned as an enabling technology to minimize the AoD of IoT applications by processing the data in edge servers close to IoT devices. In this paper, we study the AoD minimization problem for IoT big data processing in MEC networks. We first propose an exact solution for the problem by formulating it as an Integer Linear Program (ILP). We then propose an efficient heuristic for the offline AoD minimization problem. We also devise an approximation algorithm with a provable approximation ratio for a special case of the problem, by leveraging the parametric rounding technique. We thirdly develop an online learning algorithm with a bounded regret for the online AoD minimization problem under dynamic arrivals of IoT requests and uncertain network delay assumptions, by adopting the Multi-Armed Bandit (MAB) technique. We finally evaluate the performance of the proposed algorithms by extensive simulations and implementations in a real test-bed. Results show that the proposed algorithms outperform existing approaches by reducing the AoD around 10%.
ISSN: 2641-9874
2023-02-17
Lu, Shaofeng, Lv, Chengzhe, Wang, Wei, Xu, Changqing, Fan, Huadan, Lu, Yuefeng, Hu, Yulong, Li, Wenxi.  2022.  Secret Numerical Interval Decision Protocol for Protecting Private Information and Its Application. 2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML). :726–731.
Cooperative secure computing based on the relationship between numerical value and numerical interval is not only the basic problems of secure multiparty computing but also the core problems of cooperative secure computing. It is of substantial theoretical and practical significance for information security in relation to scientific computing to continuously investigate and construct solutions to such problems. Based on the Goldwasser-Micali homomorphic encryption scheme, this paper propose the Morton rule, according to the characteristics of the interval, a double-length vector is constructed to participate in the exclusive-or operation, and an efficient cooperative decision-making solution for integer and integer interval security is designed. This solution can solve more basic problems in cooperative security computation after suitable transformations. A theoretical analysis shows that this solution is safe and efficient. Finally, applications that are based on these protocols are presented.
2023-01-13
Muhamad Nur, Gunawan, Lusi, Rahmi, Fitroh, Fitroh.  2022.  Security Risk Management Analysis using Failure Mode and Effects Analysis (FMEA) Method and Mitigation Using ISO 27002:2013 for Agency in District Government. 2022 10th International Conference on Cyber and IT Service Management (CITSM). :01–06.
The Personnel Management Information System is managed by the Personnel and Human Resources Development Agency on local government office to provide personnel services. The existence of a system and information technology can help ongoing business processes but can have an impact or risk if the proper mitigation is not carried out. It is known that the problems are damage to databases, servers, and computer equipment due to bad weather, network connections being lost due to power outages, data loss due to not having backup data, and human error. This resulted in PMIS being inaccessible for some time, thus hampering ongoing business processes and causing financial losses. This study aims to identify risks, conduct a risk assessment using the failure mode and effects analysis (FMEA) method, and provide mitigation recommendations based on the ISO/IEC 27002:2013 standard. The analysis results obtained 50 failure modes categorized into five asset categories, and six failure modes have a high level. Then provide mitigation recommendations based on the ISO/IEC 27002:2013 Standard, which has been adapted to the needs of Human Resources Development Agency. Thus, the results of this study are expected to assist and serve as material for local office government's consideration in making improvements and security controls to avoid emerging threats to information assets.
2023-08-18
Lo, Pei-Yu, Chen, Chi-Wei, Hsu, Wei-Ting, Chen, Chih-Wei, Tien, Chin-Wei, Kuo, Sy-Yen.  2022.  Semi-supervised Trojan Nets Classification Using Anomaly Detection Based on SCOAP Features. 2022 IEEE International Symposium on Circuits and Systems (ISCAS). :2423—2427.
Recently, hardware Trojan has become a serious security concern in the integrated circuit (IC) industry. Due to the globalization of semiconductor design and fabrication processes, ICs are highly vulnerable to hardware Trojan insertion by malicious third-party vendors. Therefore, the development of effective hardware Trojan detection techniques is necessary. Testability measures have been proven to be efficient features for Trojan nets classification. However, most of the existing machine-learning-based techniques use supervised learning methods, which involve time-consuming training processes, need to deal with the class imbalance problem, and are not pragmatic in real-world situations. Furthermore, no works have explored the use of anomaly detection for hardware Trojan detection tasks. This paper proposes a semi-supervised hardware Trojan detection method at the gate level using anomaly detection. We ameliorate the existing computation of the Sandia Controllability/Observability Analysis Program (SCOAP) values by considering all types of D flip-flops and adopt semi-supervised anomaly detection techniques to detect Trojan nets. Finally, a novel topology-based location analysis is utilized to improve the detection performance. Testing on 17 Trust-Hub Trojan benchmarks, the proposed method achieves an overall 99.47% true positive rate (TPR), 99.99% true negative rate (TNR), and 99.99% accuracy.
2023-05-12
Yao, Jingshi, Yin, Xiang, Li, Shaoyuan.  2022.  Sensor Deception Attacks Against Initial-State Privacy in Supervisory Control Systems. 2022 IEEE 61st Conference on Decision and Control (CDC). :4839–4845.
This paper investigates the problem of synthesizing sensor deception attackers against privacy in the context of supervisory control of discrete-event systems (DES). We consider a plant controlled by a supervisor, which is subject to sensor deception attacks. Specifically, we consider an active attacker that can tamper with the observations received by the supervisor. The privacy requirement of the supervisory control system is to maintain initial-state opacity, i.e., it does not want to reveal the fact that it was initiated from a secret state during its operation. On the other hand, the attacker aims to deceive the supervisor, by tampering with its observations, such that initial-state opacity is violated due to incorrect control actions. We investigate from the attacker’s point of view by presenting an effective approach for synthesizing sensor attack strategies threatening the privacy of the system. To this end, we propose the All Attack Structure (AAS) that records state estimates for both the supervisor and the attacker. This structure serves as a basis for synthesizing a sensor attack strategy. We also discuss how to simplify the synthesis complexity by leveraging the structural properties. A running academic example is provided to illustrate the synthesis procedure.
ISSN: 2576-2370
2022-12-09
Lin, Yuhang, Tunde-Onadele, Olufogorehan, Gu, Xiaohui, He, Jingzhu, Latapie, Hugo.  2022.  SHIL: Self-Supervised Hybrid Learning for Security Attack Detection in Containerized Applications. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). :41—50.
Container security has received much research attention recently. Previous work has proposed to apply various machine learning techniques to detect security attacks in containerized applications. On one hand, supervised machine learning schemes require sufficient labelled training data to achieve good attack detection accuracy. On the other hand, unsupervised machine learning methods are more practical by avoiding training data labelling requirements, but they often suffer from high false alarm rates. In this paper, we present SHIL, a self-supervised hybrid learning solution, which combines unsupervised and supervised learning methods to achieve high accuracy without requiring any manual data labelling. We have implemented a prototype of SHIL and conducted experiments over 41 real world security attacks in 28 commonly used server applications. Our experimental results show that SHIL can reduce false alarms by 39-91% compared to existing supervised or unsupervised machine learning schemes while achieving a higher or similar detection rate.
2023-05-26
Liu, Bin, Chen, Jingzhao, Hu, Yong.  2022.  A Simple Approach to Data-driven Security Detection for Industrial Cyber-Physical Systems. 2022 34th Chinese Control and Decision Conference (CCDC). :5440—5445.
In this paper, a data-driven security detection approach is proposed in a simple manner. The detector is designed to deal with false data injection attacks suffered by industrial cyber-physical systems with unknown model information. First, the attacks are modeled from the perspective of the generalized plant mismatch, rather than the operating data being tampered. Second, some subsystems are selected to reduce the design complexity of the detector, and based on them, an output estimator with iterative form is presented in a theoretical way. Then, a security detector is constructed based on the proposed estimator and its cost function. Finally, the effectiveness of the proposed approach is verified by simulations of a Western States Coordinated Council 9-bus power system.
2023-07-19
Cheng, Ya Qiao, Xu, Bin, Liu, Kun, Liu, Yue Fan.  2022.  Software design for recording and playback of multi-source heterogeneous data. 2022 3rd International Conference on Computer Science and Management Technology (ICCSMT). :225—228.
The development of marine environment monitoring equipment has been improved by leaps and bounds in recent years. Numerous types of marine environment monitoring equipment have mushroomed with a wide range of high-performance capabilities. However, the existing data recording software cannot meet the demands of real-time and comprehensive data recording in view of the growing data types and the exponential data growth rate generated by various types of marine environment monitoring equipment. Based on the above-mentioned conundrum, this paper proposes a multi-source heterogeneous marine environmental data acquisition and storage method, which can record and replay multi-source heterogeneous data based upon the needs of real-time and accurate performance and also possess good compatibility and expandability.
2023-01-13
Li, Xiuli, Wang, Guoshi, Wang, Chuping, Qin, Yanyan, Wang, Ning.  2022.  Software Source Code Security Audit Algorithm Supporting Incremental Checking. 2022 IEEE 7th International Conference on Smart Cloud (SmartCloud). :53—58.
Source code security audit is an effective technique to deal with security vulnerabilities and software bugs. As one kind of white-box testing approaches, it can effectively help developers eliminate defects in the code. However, it suffers from performance issues. In this paper, we propose an incremental checking mechanism which enables fast source code security audits. And we conduct comprehensive experiments to verify the effectiveness of our approach.
2023-09-07
Jin, Bo, Zhou, Zheng, Long, Fei, Xu, Huan, Chen, Shi, Xia, Fan, Wei, Xiaoyan, Zhao, Qingyao.  2022.  Software Supply Chain Security of Power Industry Based on BAS Technology. 2022 International Conference on Artificial Intelligence of Things and Crowdsensing (AIoTCs). :556–561.
The rapid improvement of computer and network technology not only promotes the improvement of productivity and facilitates people's life, but also brings new threats to production and life. Cyberspace security has attracted more and more attention. Different from traditional cyberspace security, APT attacks on key networks or infrastructure, with the main goal of stealing intellectual property, confidential information or sabotage, seriously threatening the interests and security of governments, enterprises and scientific research institutions. Timely detection and blocking is particularly important. The purpose of this paper is to study the security of software supply chain in power industry based on BAS technology. The experimental data shows that Type 1 projects account for the least amount and Type 2 projects account for the highest proportion. Type 1 projects have high unit price contracts and high profits, but the number is small and the time for signing orders is long.
2023-06-09
Lee, Hwiwon, Kim, Sosun, Kim, Huy Kang.  2022.  SoK: Demystifying Cyber Resilience Quantification in Cyber-Physical Systems. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :178—183.
Cyber-Physical System (CPS) is becoming increasingly complicated and integrated into our daily lives, laying the foundation for advanced infrastructures, commodities, and services. In this regard, operational continuity of the system is the most critical objective, and cyber resilience quantification to evaluate and enhance it has garnered attention. However, understanding of the increasingly critical cyber risks is weak, with the focus being solely on the damage that occurs in the physical domain. To address this gap, this work takes aim at shedding some light on the cyber resilience quantification of CPS. We review the numerous resilience quantification techniques presented to date through several metrics to provide systematization of knowledge (SoK). In addition, we discuss the challenges of current quantification methods and give ideas for future research that will lead to more precise cyber resilience measurements.
2023-06-23
Xie, Guorui, Li, Qing, Cui, Chupeng, Zhu, Peican, Zhao, Dan, Shi, Wanxin, Qi, Zhuyun, Jiang, Yong, Xiao, Xi.  2022.  Soter: Deep Learning Enhanced In-Network Attack Detection Based on Programmable Switches. 2022 41st International Symposium on Reliable Distributed Systems (SRDS). :225–236.
Though several deep learning (DL) detectors have been proposed for the network attack detection and achieved high accuracy, they are computationally expensive and struggle to satisfy the real-time detection for high-speed networks. Recently, programmable switches exhibit a remarkable throughput efficiency on production networks, indicating a possible deployment of the timely detector. Therefore, we present Soter, a DL enhanced in-network framework for the accurate real-time detection. Soter consists of two phases. One is filtering packets by a rule-based decision tree running on the Tofino ASIC. The other is executing a well-designed lightweight neural network for the thorough inspection of the suspicious packets on the CPU. Experiments on the commodity switch demonstrate that Soter behaves stably in ten network scenarios of different traffic rates and fulfills per-flow detection in 0.03s. Moreover, Soter naturally adapts to the distributed deployment among multiple switches, guaranteeing a higher total throughput for large data centers and cloud networks.
ISSN: 2575-8462
2023-02-13
Lee, Haemin, Son, Seok Bin, Yun, Won Joon, Kim, Joongheon, Jung, Soyi, Kim, Dong Hwa.  2022.  Spatio-Temporal Attack Course-of-Action (COA) Search Learning for Scalable and Time-Varying Networks. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :1581—1584.
One of the key topics in network security research is the autonomous COA (Couse-of-Action) attack search method. Traditional COA attack search methods that passively search for attacks can be difficult, especially as the network gets bigger. To address these issues, new autonomous COA techniques are being developed, and among them, an intelligent spatial algorithm is designed in this paper for efficient operations in scalable networks. On top of the spatial search, a Monte-Carlo (MC)-based temporal approach is additionally considered for taking care of time-varying network behaviors. Therefore, we propose a spatio-temporal attack COA search algorithm for scalable and time-varying networks.