Biblio

Found 4093 results

Filters: First Letter Of Last Name is L  [Clear All Filters]
2022-02-09
Xu, Xiaojun, Wang, Qi, Li, Huichen, Borisov, Nikita, Gunter, Carl A., Li, Bo.  2021.  Detecting AI Trojans Using Meta Neural Analysis. 2021 IEEE Symposium on Security and Privacy (SP). :103–120.
In machine learning Trojan attacks, an adversary trains a corrupted model that obtains good performance on normal data but behaves maliciously on data samples with certain trigger patterns. Several approaches have been proposed to detect such attacks, but they make undesirable assumptions about the attack strategies or require direct access to the trained models, which restricts their utility in practice.This paper addresses these challenges by introducing a Meta Neural Trojan Detection (MNTD) pipeline that does not make assumptions on the attack strategies and only needs black-box access to models. The strategy is to train a meta-classifier that predicts whether a given target model is Trojaned. To train the meta-model without knowledge of the attack strategy, we introduce a technique called jumbo learning that samples a set of Trojaned models following a general distribution. We then dynamically optimize a query set together with the meta-classifier to distinguish between Trojaned and benign models.We evaluate MNTD with experiments on vision, speech, tabular data and natural language text datasets, and against different Trojan attacks such as data poisoning attack, model manipulation attack, and latent attack. We show that MNTD achieves 97% detection AUC score and significantly outperforms existing detection approaches. In addition, MNTD generalizes well and achieves high detection performance against unforeseen attacks. We also propose a robust MNTD pipeline which achieves around 90% detection AUC even when the attacker aims to evade the detection with full knowledge of the system.
2022-04-22
Deng, Weimin, Xu, Da, Xu, Yuhan, Li, Mengshi.  2021.  Detection and Classification of Power Quality Disturbances Using Variational Mode Decomposition and Convolutional Neural Networks. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :1514—1518.
Power quality gains more and more attentions because disturbances in power quality may damage equipment security, power availability and system reliability in power system. Detection and classification of the power quality disturbances is the first step before taking measures to lessen their harmful effects. Common methods to classify power quality disturbances includes signal processing methods, machine learning methods and deep learning methods. Signal processing methods are good at feature extraction, while machine learning methods and deep learning methods are expert in multi-classification tasks. Via combing their respective advantages, this paper proposes a combined method based on variational mode decomposition and convolutional neural networks, which needs a small quantity of samples but achieves high classification precision. The proposed method is proved to be a qualified and competitive scheme for the detection and classification of power quality disturbances.
Liu, Bo, Kong, Qingshan, Huang, Weiqing, Guo, Shaoying.  2021.  Detection of Events in OTDR Data via Variational Mode Decomposition and Hilbert Transform. 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS). :38—43.
Optical time domain reflectometry (OTDR) plays an important role in optical fiber communications. To improve the performance of OTDR, we propose a method based on the Variational Mode Decomposition (VMD) and Hilbert transform (HT) for fiber events detection. Firstly, the variational mode decomposition is applied to decompose OTDR data into some intrinsic mode functions (imfs). To determine the decomposition mode number in VMD, an adaptive estimation method is introduced. Secondly, the Hilbert transform is utilized to obtain the instantaneous amplitude of the imf for events localization. Finally, the Dynamic Time Warping (DTW) is used for identifying the type of event. Experimental results show that the proposed method can locate events accurately. Compared with the Short-Time Fourier Transform (STFT) method, the VMD-HT method presents a higher accuracy in events localization, which indicates that the method is effective and applicable.
2022-05-06
Lokhande, Trupti, Sonekar, Shrikant, Wani, Aachal.  2021.  Development of an Algorithmic Approach for Hiding Sensitive Data and Recovery of Data based on Fingerprint Identification for Secure Cloud Storage. 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN). :800–805.
Information Security is a unified piece of information technology that has emerged as vibrant technology in the last two decades. To manage security, authentication assumes a significant part. Biometric is the physical unique identification as well as authentication for the third party. We have proposed the security model for preventing many attacks so we are used the innermost layer as a 3DES (Triple Encryption standard) cryptography algorithm that is providing 3- key protection as 64-bit and the outermost layer used the MD5 (Message Digest) algorithm. i. e. providing 128-bit protection as well as we is using fingerprint identification as physical security that is used in third-party remote integrity auditing. Remote data integrity auditing is proposed to ensure the uprightness of the information put away in the cloud. Data Storage of cloud services has expanded paces of acknowledgment because of their adaptability and the worry of the security and privacy levels. The large number of integrity and security issues that arise depends on the difference between the customer and the service provider in the sense of an external auditor. The remote data integrity auditing is at this point prepared to be viably executed. In the meantime, the proposed scheme is depending on identity-based cryptography, which works on the convoluted testament of the executives. The safety investigation and the exhibition assessment show that the planned property is safe and productive.
2022-04-12
Chen, Huiping, Dong, Changyu, Fan, Liyue, Loukides, Grigorios, Pissis, Solon P., Stougie, Leen.  2021.  Differentially Private String Sanitization for Frequency-Based Mining Tasks. 2021 IEEE International Conference on Data Mining (ICDM). :41—50.
Strings are used to model genomic, natural language, and web activity data, and are thus often shared broadly. However, string data sharing has raised privacy concerns stemming from the fact that knowledge of length-k substrings of a string and their frequencies (multiplicities) may be sufficient to uniquely reconstruct the string; and from that the inference of such substrings may leak confidential information. We thus introduce the problem of protecting length-k substrings of a single string S by applying Differential Privacy (DP) while maximizing data utility for frequency-based mining tasks. Our theoretical and empirical evidence suggests that classic DP mechanisms are not suitable to address the problem. In response, we employ the order-k de Bruijn graph G of S and propose a sampling-based mechanism for enforcing DP on G. We consider the task of enforcing DP on G using our mechanism while preserving the normalized edge multiplicities in G. We define an optimization problem on integer edge weights that is central to this task and develop an algorithm based on dynamic programming to solve it exactly. We also consider two variants of this problem with real edge weights. By relaxing the constraint of integer edge weights, we are able to develop linear-time exact algorithms for these variants, which we use as stepping stones towards effective heuristics. An extensive experimental evaluation using real-world large-scale strings (in the order of billions of letters) shows that our heuristics are efficient and produce near-optimal solutions which preserve data utility for frequency-based mining tasks.
2022-03-22
Love, Fred, Leopold, Jennifer, McMillin, Bruce, Su, Fei.  2021.  Discriminative Pattern Mining for Runtime Security Enforcement of Cyber-Physical Point-of-Care Medical Technology. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1066—1072.
Point-of-care diagnostics are a key technology for various safety-critical applications from providing diagnostics in developing countries lacking adequate medical infrastructure to fight infectious diseases to screening procedures for border protection. Digital microfluidics biochips are an emerging technology that are increasingly being evaluated as a viable platform for rapid diagnosis and point-of-care field deployment. In such a technology, processing errors are inherent. Cyber-physical digital biochips offer higher reliability through the inclusion of automated error recovery mechanisms that can reconfigure operations performed on the electrode array. Recent research has begun to explore security vulnerabilities of digital microfluidic systems. This paper expands previous work that exploits vulnerabilities due to implicit trust in the error recovery mechanism. In this work, a discriminative data mining approach is introduced to identify frequent bioassay operations that can be cyber-physically attested for runtime security protection.
2021-12-20
Buccafurri, Francesco, De Angelis, Vincenzo, Idone, Maria Francesca, Labrini, Cecilia.  2021.  A Distributed Location Trusted Service Achieving k-Anonymity against the Global Adversary. 2021 22nd IEEE International Conference on Mobile Data Management (MDM). :133–138.
When location-based services (LBS) are delivered, location data should be protected against honest-but-curious LBS providers, them being quasi-identifiers. One of the existing approaches to achieving this goal is location k-anonymity, which leverages the presence of a trusted party, called location trusted service (LTS), playing the role of anonymizer. A drawback of this approach is that the location trusted service is a single point of failure and traces all the users. Moreover, the protection is completely nullified if a global passive adversary is allowed, able to monitor the flow of messages, as the source of the query can be identified despite location k-anonymity. In this paper, we propose a distributed and hierarchical LTS model, overcoming both the above drawbacks. Moreover, position notification is used as cover traffic to hide queries and multicast is minimally adopted to hide responses, to keep k-anonymity also against the global adversary, thus enabling the possibility that LBS are delivered within social networks.
2022-11-02
Li, Lishuang, Lian, Ruiyuan, Lu, Hongbin.  2021.  Document-Level Biomedical Relation Extraction with Generative Adversarial Network and Dual-Attention Multi-Instance Learning. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). :438–443.
Document-level relation extraction (RE) aims to extract relations among entities within a document, which is more complex than its sentence-level counterpart, especially in biomedical text mining. Chemical-disease relation (CDR) extraction aims to extract complex semantic relationships between chemicals and diseases entities in documents. In order to identify the relations within and across multiple sentences at the same time, existing methods try to build different document-level heterogeneous graph. However, the entity relation representations captured by these models do not make full use of the document information and disregard the noise introduced in the process of integrating various information. In this paper, we propose a novel model DAM-GAN to document-level biomedical RE, which can extract entity-level and mention-level representations of relation instances with R-GCN and Dual-Attention Multi-Instance Learning (DAM) respectively, and eliminate the noise with Generative Adversarial Network (GAN). Entity-level representations of relation instances model the semantic information of all entity pairs from the perspective of the whole document, while the mention-level representations from the perspective of mention pairs related to these entity pairs in different sentences. Therefore, entity- and mention-level representations can be better integrated to represent relation instances. Experimental results demonstrate that our model achieves superior performance on public document-level biomedical RE dataset BioCreative V Chemical Disease Relation(CDR).
2022-09-20
Chang, Fuhong, Li, Qi, Wang, Yuanyuan, Zhang, Wenfeng.  2021.  Dynamic Detection Model of False Data Injection Attack Facing Power Network Security. 2021 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT). :317—321.
In order to protect the safety of power grid, improve the early warning precision of false data injection. This paper presents a dynamic detection model for false data injection attacks. Based on the characteristics of APT attacks, a model of attack characteristics for trusted regions is constructed. In order to realize the accurate state estimation, unscented Kalman filtering algorithm is used to estimate the state of nonlinear power system and realize dynamic attack detection. Experimental results show that the precision of this method is higher than 90%, which verifies the effectiveness of this paper in attack detection.
2022-02-07
Lee, Shan-Hsin, Lan, Shen-Chieh, Huang, Hsiu-Chuan, Hsu, Chia-Wei, Chen, Yung-Shiu, Shieh, Shiuhpyng.  2021.  EC-Model: An Evolvable Malware Classification Model. 2021 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
Malware evolves quickly as new attack, evasion and mutation techniques are commonly used by hackers to build new malicious malware families. For malware detection and classification, multi-class learning model is one of the most popular machine learning models being used. To recognize malicious programs, multi-class model requires malware types to be predefined as output classes in advance which cannot be dynamically adjusted after the model is trained. When a new variant or type of malicious programs is discovered, the trained multi-class model will be no longer valid and have to be retrained completely. This consumes a significant amount of time and resources, and cannot adapt quickly to meet the timely requirement in dealing with dynamically evolving malware types. To cope with the problem, an evolvable malware classification deep learning model, namely EC-Model, is proposed in this paper which can dynamically adapt to new malware types without the need of fully retraining. Consequently, the reaction time can be significantly reduced to meet the timely requirement of malware classification. To our best knowledge, our work is the first attempt to adopt multi-task, deep learning for evolvable malware classification.
2022-07-28
Obert, James, Loffredo, Tim.  2021.  Efficient Binary Static Code Data Flow Analysis Using Unsupervised Learning. 2021 4th International Conference on Artificial Intelligence for Industries (AI4I). :89—90.
The ever increasing need to ensure that code is reliably, efficiently and safely constructed has fueled the evolution of popular static binary code analysis tools. In identifying potential coding flaws in binaries, tools such as IDA Pro are used to disassemble the binaries into an opcode/assembly language format in support of manual static code analysis. Because of the highly manual and resource intensive nature involved with analyzing large binaries, the probability of overlooking potential coding irregularities and inefficiencies is quite high. In this paper, a light-weight, unsupervised data flow methodology is described which uses highly-correlated data flow graph (CDFGs) to identify coding irregularities such that analysis time and required computing resources are minimized. Such analysis accuracy and efficiency gains are achieved by using a combination of graph analysis and unsupervised machine learning techniques which allows an analyst to focus on the most statistically significant flow patterns while performing binary static code analysis.
2022-07-01
Guo, Xingchang, Liu, Ningchun, Hou, Xindi, Gao, Shuai, Zhou, Huachun.  2021.  An Efficient NDN Routing Mechanism Design in P4 Environment. 2021 2nd Information Communication Technologies Conference (ICTC). :28—33.
Name Data Networking (NDN) is a clean-slate network redesign that uses content names for routing and addressing. Facing the fact that TCP/IP is deeply entrenched in the current Internet architecture, NDN has made slow progress in industrial promotion. Meanwhile, new architectures represented by SDN, P4, etc., provide a flexible and programmable approach to network research. As a result, a centralized NDN routing mechanism is needed in the scenario for network integration between NDN and TCP/IP. Combining the NLSR protocol and the P4 environment, we introduce an efficient NDN routing mechanism that offers extensible NDN routing services (e.g., resources-location management and routing calculation) which can be programmed in the control plane. More precisely, the proposed mechanism allows the programmable switches to transmit NLSR packets to the control plane with the extended data plane. The NDN routing services are provided by control plane application which framework bases on resource-location mapping to achieve part of the NLSR mechanism. Experimental results show that the proposed mechanism can reduce the number of routing packets significantly, and introduce a slight overhead in the controller compared with NLSR simulation.
2022-03-01
Gordon, Holden, Park, Conrad, Tushir, Bhagyashri, Liu, Yuhong, Dezfouli, Behnam.  2021.  An Efficient SDN Architecture for Smart Home Security Accelerated by FPGA. 2021 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN). :1–3.
With the rise of Internet of Things (IoT) devices, home network management and security are becoming complex. There is an urgent requirement to make smart home network management more efficient. This work proposes an SDN-based architecture to secure smart home networks through K-Nearest Neighbor (KNN) based device classifications and malicious traffic detection. The efficiency is enhanced by offloading the computation-intensive KNN model to a Field Programmable Gate Arrays (FPGA). Furthermore, we propose a custom KNN solution that exhibits the best performance on an FPGA compared with four alternative KNN instances (i.e., 78% faster than a parallel Bubble Sort-based implementation and 99% faster than three other sorting algorithms). Moreover, with 36,225 training samples, the proposed KNN solution classifies a test query with 95% accuracy in approximately 4 ms on an FPGA compared to 57 seconds on a CPU platform. This highlights the promise of FPGA-based platforms for edge computing applications in the smart home.
2022-04-01
Yuan, Yilin, Zhang, Jianbiao, Xu, Wanshan, Li, Zheng.  2021.  Enable data privacy, dynamics, and batch in public auditing scheme for cloud storage system. 2021 2nd International Conference on Computer Communication and Network Security (CCNS). :157—163.
With the popularity of cloud computing, cloud storage technology has also been widely used. Among them, data integrity verification is a hot research topic. At present, the realization of public auditing has become the development trend of integrity verification. Most existing public auditing schemes rarely consider some indispensable functions at the same time. Thus, in this paper, we propose a comprehensive public auditing scheme (PDBPA) that can simultaneously realize data block privacy protection, data dynamics, and multi- user batch auditing. Our PDBPA scheme is implemented in bilinear pairing. By adding random masking in the audit phase, with the help of the characteristics of homomorphic verifiable tags (HVTs), it can not only ensure that the TPA performs the audit work correctly, but also prevent it from exploring the user’s sensitive data. In addition, by utilizing the modified index hash table (MIHT), data dynamics can be effectively achieved. Furthermore, we provide a specific process for the TPA to perform batch audits for multiple users. Moreover, we formally prove the security of the scheme; while achieving the audit correctness, it can resist three types of attacks.
2022-01-31
Pasias, Achilleas, Kotsiopoulos, Thanasis, Lazaridis, Georgios, Drosou, Anastasios, Tzovaras, Dimitrios, Sarigiannidis, Panagiotis.  2021.  Enabling Cyber-attack Mitigation Techniques in a Software Defined Network. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :497–502.
Software Defined Networking (SDN) is an innovative technology, which can be applied in a plethora of applications and areas. Recently, SDN has been identified as one of the most promising solutions for industrial applications as well. The key features of SDN include the decoupling of the control plane from the data plane and the programmability of the network through application development. Researchers are looking at these features in order to enhance the Quality of Service (QoS) provisioning of modern network applications. To this end, the following work presents the development of an SDN application, capable of mitigating attacks and maximizing the network’s QoS, by implementing mixed integer linear programming but also using genetic algorithms. Furthermore, a low-cost, physical SDN testbed was developed in order to evaluate the aforementioned application in a more realistic environment other than only using simulation tools.
2022-03-15
Hu, Yanbu, Shao, Cuiping, Li, Huiyun.  2021.  Energy-Efficient Deep Neural Networks Implementation on a Scalable Heterogeneous FPGA Cluster. 2021 IEEE 15th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :10—15.
In recent years, with the rapid development of DNN, the algorithm complexity in a series of fields such as computer vision and natural language processing is increasing rapidly. FPGA-based DNN accelerators have demonstrated superior flexibility and performance, with higher energy efficiency compared to high-performance devices such as GPU. However, the computing resources of a single FPGA are limited and it is difficult to flexibly meet the requirements of high throughput and high energy efficiency of different computing scales. Therefore, this paper proposes a DNN implementation method based on the scalable heterogeneous FPGA cluster to adapt to different tasks and achieve high throughput and energy efficiency. Firstly, the method divides a single enormous task into multiple modules and running each module on different FPGA as the pipeline structure between multiple boards. Secondly, a task deployment method based on dichotomy is proposed to maximize the balance of task execution time of different pipeline stages to improve throughput and energy efficiency. Thirdly, optimize DNN computing module according to the relationship between computing power and bandwidth, and improve energy efficiency by reducing waste of ineffective resources and improving resource utilization. The experiment results on Alexnet and VGG-16 demonstrate that we use Zynq 7035 cluster can at most achieves ×25.23 energy efficiency of optimized AMD AIO processor. Compared with previous works of single FPGA and FPGA cluster, the energy efficiency is improved by 59.5% and 18.8%, respectively.
2022-05-19
Wu, Peiyan, Chen, Wenbin, Wu, Hualin, Qi, Ke, Liu, Miao.  2021.  Enhanced Game Theoretical Spectrum Sharing Method Based on Blockchain Consensus. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). :1–7.
The limited spectrum resources need to provide safe and efficient spectrum service for the intensive users. Malicious spectrum work nodes will affect the normal operation of the entire system. Using the blockchain model, consensus algorithm Praft based on optimized Raft is to solve the consensus problem in Byzantine environment. Message digital signatures give the spectrum node some fault tolerance and tamper resistance. Spectrum sharing among spectrum nodes is carried out in combination with game theory. The existing game theoretical algorithm does not consider the influence of spectrum occupancy of primary users and cognitive users on primary users' utility and enthusiasm at the same time. We elicits a reinforcement factor and analyzes the effect of the reinforcement factor on strategy performance. This scheme optimizes the previous strategy so that the profits of spectrum nodes are improved and a good Nash equilibrium is shown, while Praft solves the Byzantine problem left by Raft.
2022-02-07
Keyes, David Sean, Li, Beiqi, Kaur, Gurdip, Lashkari, Arash Habibi, Gagnon, Francois, Massicotte, Frédéric.  2021.  EntropLyzer: Android Malware Classification and Characterization Using Entropy Analysis of Dynamic Characteristics. 2021 Reconciling Data Analytics, Automation, Privacy, and Security: A Big Data Challenge (RDAAPS). :1–12.
The unmatched threat of Android malware has tremendously increased the need for analyzing prominent malware samples. There are remarkable efforts in static and dynamic malware analysis using static features and API calls respectively. Nonetheless, there is a void to classify Android malware by analyzing its behavior using multiple dynamic characteristics. This paper proposes EntropLyzer, an entropy-based behavioral analysis technique for classifying the behavior of 12 eminent Android malware categories and 147 malware families taken from CCCS-CIC-AndMal2020 dataset. This work uses six classes of dynamic characteristics including memory, API, network, logcat, battery, and process to classify and characterize Android malware. Results reveal that the entropy-based analysis successfully determines the behavior of all malware categories and most of the malware families before and after rebooting the emulator.
2022-04-19
Zhang, Zhaoqian, Zhang, Jianbiao, Yuan, Yilin, Li, Zheng.  2021.  An Expressive Fully Policy-Hidden Ciphertext Policy Attribute-Based Encryption Scheme with Credible Verification Based on Blockchain. IEEE Internet of Things Journal. :1–1.
As the public cloud becomes one of the leading ways in data sharing nowadays, data confidentiality and user privacy are increasingly critical. Partially policy-hidden ciphertext policy attribute-based encryption (CP-ABE) can effectively protect data confidentiality while reducing privacy leakage by hiding part of the access structure. However, it cannot satisfy the need of data sharing in the public cloud with complex users and large amounts of data, both in terms of less expressive access structures and limited granularity of policy hiding. Moreover, the verification of access right to shared data and correctness of decryption are ignored or conducted by an untrusted third party, and the prime-order groups are seldom considered in the expressive policy-hidden schemes. This paper proposes a fully policy-hidden CP-ABE scheme constructed on LSSS access structure and prime-order groups for public cloud data sharing. To help users decrypt, HVE with a ``convert step'' is applied, which is more compatible with CP-ABE. Meanwhile, decentralized credible verification of access right to shared data and correctness of decryption based on blockchain are also provided. We prove the security of our scheme rigorously and compare the scheme with others comprehensively. The results show that our scheme performs better.
Conference Name: IEEE Internet of Things Journal
2022-02-09
Buccafurri, Francesco, De Angelis, Vincenzo, Idone, Maria Francesca, Labrini, Cecilia.  2021.  Extending Routes in Tor to Achieve Recipient Anonymity against the Global Adversary. 2021 International Conference on Cyberworlds (CW). :238–245.
Tor is a famous routing overlay network based on the Onion multi-layered encryption to support communication anonymity in a threat model in which some network nodes are malicious. However, Tor does not provide any protection against the global passive adversary. In this threat model, an idea to obtain recipient anonymity, which is enough to have relationship anonymity, is to hide the recipient among a sufficiently large anonymity set. However, this would lead to high latency both in the set-up phase (which has a quadratic cost in the number of involved nodes) and in the successive communication. In this paper, we propose a way to arrange a Tor circuit with a tree-like topology, in which the anonymity set consists of all its nodes, whereas set-up and communication latency depends on the number of the sole branch nodes (which is a small fraction of all the nodes). Basically, the cost goes down from quadratic to linear. Anonymity is obtained by applying a broadcast-based technique for the forward message, and cover traffic (generated by the terminal-chain nodes) plus mixing over branch nodes, for the response.
2022-02-24
Loganathan, K., Saranya, D..  2021.  An Extensive Web Security Through Cloud Based Double Layer Password Encryption (DLPE) Algorithm for Secured Management Systems. 2021 International Conference on System, Computation, Automation and Networking (ICSCAN). :1–6.
Nowadays , cloud -based technology has been enlarged depends on the human necessities in the world. A lot of technologies is discovered that serve the people in different ways of cloud -based security and best resource allocation. Cloud-based technology is the essential factor to the resources like hardware, software for effective resource utilization . The securing applications enabled security mechanism enables the vital role for cloud -based web security through the secured password. The violation of data by the unauthorized access of users concerns many web developers and application owners . Web security enables the cloud-based password management system that illustrates the data storage and the web passwords access through the "Cloud framework". Web security, End-to-end passwords , and all the browser -based passwords could belong to the analysis of web security . The aim is to enhance system security. Thus, sensitive data are sustained with security and privacy . In this paper , the proposed Password Management via cloud-based web security gets to attain . An efficient Double Layer Password Encryption (DLPE ) algorithm to enable the secured password management system . Text -based passwords continue to be the most popular method of online user identification . They safeguard internet accounts with important assets against harmful attempts on passwords. The security of passwords is dependent on the development of strong passwords and keeping them from being stolen by intruders . The proposed DLPE algorithm perceived the double - layer encryption system as an effective security concern. When the data user accesses the user Login , the OTP generates via mail /SMS , and the original message is encrypted using public key generation. Then the text of data gets doubly encrypted through the cloud framework . The private key is used to decipher the cipher text . If the OTP gets matched , the text is to be decrypted over the text data . When double encryption happens , the detection of data flaws, malicious attacks , application hackers gets reduced and the strong password enabled double-layer encryption attained the secured data access without any malicious attackers . The data integrity , confidentiality enabled password management . The ability to manage a distributed systems policy like the Double Layer Password encryption technique enables password verification for the data used to highly secure the data or information.
2022-11-18
Tian, Pu, Hatcher, William Grant, Liao, Weixian, Yu, Wei, Blasch, Erik.  2021.  FALIoTSE: Towards Federated Adversarial Learning for IoT Search Engine Resiliency. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :290–297.
To improve efficiency and resource usage in data retrieval, an Internet of Things (IoT) search engine organizes a vast amount of scattered data and responds to client queries with processed results. Machine learning provides a deep understanding of complex patterns and enables enhanced feedback to users through well-trained models. Nonetheless, machine learning models are prone to adversarial attacks via the injection of elaborate perturbations, resulting in subverted outputs. Particularly, adversarial attacks on time-series data demand urgent attention, as sensors in IoT systems are collecting an increasing volume of sequential data. This paper investigates adversarial attacks on time-series analysis in an IoT search engine (IoTSE) system. Specifically, we consider the Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) as our base model, implemented in a simulated federated learning scheme. We propose the Federated Adversarial Learning for IoT Search Engine (FALIoTSE) that exploits the shared parameters of the federated model as the target for adversarial example generation and resiliency. Using a real-world smart parking garage dataset, the impact of an attack on FALIoTSE is demonstrated under various levels of perturbation. The experiments show that the training error increases significantly with noises from the gradient.
2022-03-14
Li, Xiang, Liu, Baojun, Zheng, Xiaofeng, Duan, Haixin, Li, Qi, Huang, Youjun.  2021.  Fast IPv6 Network Periphery Discovery and Security Implications. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :88–100.
Numerous measurement researches have been performed to discover the IPv4 network security issues by leveraging the fast Internet-wide scanning techniques. However, IPv6 brings the 128-bit address space and renders brute-force network scanning impractical. Although significant efforts have been dedicated to enumerating active IPv6 hosts, limited by technique efficiency and probing accuracy, large-scale empirical measurement studies under the increasing IPv6 networks are infeasible now. To fill this research gap, by leveraging the extensively adopted IPv6 address allocation strategy, we propose a novel IPv6 network periphery discovery approach. Specifically, XMap, a fast network scanner, is developed to find the periphery, such as a home router. We evaluate it on twelve prominent Internet service providers and harvest 52M active peripheries. Grounded on these found devices, we explore IPv6 network risks of the unintended exposed security services and the flawed traffic routing strategies. First, we demonstrate the unintended exposed security services in IPv6 networks, such as DNS, and HTTP, have become emerging security risks by analyzing 4.7M peripheries. Second, by inspecting the periphery's packet routing strategies, we present the flawed implementations of IPv6 routing protocol affecting 5.8M router devices. Attackers can exploit this common vulnerability to conduct effective routing loop attacks, inducing DoS to the ISP's and home routers with an amplification factor of \textbackslashtextbackslashgt 200. We responsibly disclose those issues to all involved vendors and ASes and discuss mitigation solutions. Our research results indicate that the security community should revisit IPv6 network strategies immediately.
2021-12-20
Luo, Xinjian, Wu, Yuncheng, Xiao, Xiaokui, Ooi, Beng Chin.  2021.  Feature Inference Attack on Model Predictions in Vertical Federated Learning. 2021 IEEE 37th International Conference on Data Engineering (ICDE). :181–192.
Federated learning (FL) is an emerging paradigm for facilitating multiple organizations' data collaboration without revealing their private data to each other. Recently, vertical FL, where the participating organizations hold the same set of samples but with disjoint features and only one organization owns the labels, has received increased attention. This paper presents several feature inference attack methods to investigate the potential privacy leakages in the model prediction stage of vertical FL. The attack methods consider the most stringent setting that the adversary controls only the trained vertical FL model and the model predictions, relying on no background information of the attack target's data distribution. We first propose two specific attacks on the logistic regression (LR) and decision tree (DT) models, according to individual prediction output. We further design a general attack method based on multiple prediction outputs accumulated by the adversary to handle complex models, such as neural networks (NN) and random forest (RF) models. Experimental evaluations demonstrate the effectiveness of the proposed attacks and highlight the need for designing private mechanisms to protect the prediction outputs in vertical FL.
2022-09-20
Wang, Xuelei, Fidge, Colin, Nourbakhsh, Ghavameddin, Foo, Ernest, Jadidi, Zahra, Li, Calvin.  2021.  Feature Selection for Precise Anomaly Detection in Substation Automation Systems. 2021 13th IEEE PES Asia Pacific Power & Energy Engineering Conference (APPEEC). :1—6.
With the rapid advancement of the electrical grid, substation automation systems (SASs) have been developing continuously. However, with the introduction of advanced features, such as remote control, potential cyber security threats in SASs are also increased. Additionally, crucial components in SASs, such as protection relays, usually come from third-party vendors and may not be fully trusted. Untrusted devices may stealthily perform harmful or unauthorised behaviours which could compromise or damage SASs, and therefore, bring adverse impacts to the primary plant. Thus, it is necessary to detect abnormal behaviours from an untrusted device before it brings about catastrophic impacts. Anomaly detection techniques are suitable to detect anomalies in SASs as they only bring minimal side-effects to normal system operations. Many researchers have developed various machine learning algorithms and mathematical models to improve the accuracy of anomaly detection. However, without prudent feature selection, it is difficult to achieve high accuracy when detecting attacks launched from internal trusted networks, especially for stealthy message modification attacks which only modify message payloads slightly and imitate patterns of benign behaviours. Therefore, this paper presents choices of features which improve the accuracy of anomaly detection within SASs, especially for detecting “stealthy” attacks. By including two additional features, Boolean control data from message payloads and physical values from sensors, our method improved the accuracy of anomaly detection by decreasing the false-negative rate from 25% to 5% approximately.