Biblio

Found 4093 results

Filters: First Letter Of Last Name is L  [Clear All Filters]
2022-03-08
Wang, Xinyi, Yang, Bo, Liu, Qi, Jin, Tiankai, Chen, Cailian.  2021.  Collaboratively Diagnosing IGBT Open-circuit Faults in Photovoltaic Inverters: A Decentralized Federated Learning-based Method. IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society. :1–6.
In photovoltaic (PV) systems, machine learning-based methods have been used for fault detection and diagnosis in the past years, which require large amounts of data. However, fault types in a single PV station are usually insufficient in practice. Due to insufficient and non-identically distributed data, packet loss and privacy concerns, it is difficult to train a model for diagnosing all fault types. To address these issues, in this paper, we propose a decentralized federated learning (FL)-based fault diagnosis method for insulated gate bipolar transistor (IGBT) open-circuits in PV inverters. All PV stations use the convolutional neural network (CNN) to train local diagnosis models. By aggregating neighboring model parameters, each PV station benefits from the fault diagnosis knowledge learned from neighbors and achieves diagnosing all fault types without sharing original data. Extensive experiments are conducted in terms of non-identical data distributions, various transmission channel conditions and whether to use the FL framework. The results are as follows: 1) Using data with non-identical distributions, the collaboratively trained model diagnoses faults accurately and robustly; 2) The continuous transmission and aggregation of model parameters in multiple rounds make it possible to obtain ideal training results even in the presence of packet loss; 3) The proposed method allows each PV station to diagnose all fault types without original data sharing, which protects data privacy.
2022-02-22
Lanus, Erin, Freeman, Laura J., Richard Kuhn, D., Kacker, Raghu N..  2021.  Combinatorial Testing Metrics for Machine Learning. 2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :81–84.
This paper defines a set difference metric for comparing machine learning (ML) datasets and proposes the difference between datasets be a function of combinatorial coverage. We illustrate its utility for evaluating and predicting performance of ML models. Identifying and measuring differences between datasets is of significant value for ML problems, where the accuracy of the model is heavily dependent on the degree to which training data are sufficiently representative of data encountered in application. The method is illustrated for transfer learning without retraining, the problem of predicting performance of a model trained on one dataset and applied to another.
2022-04-19
Garn, Bernhard, Sebastian Lang, Daniel, Leithner, Manuel, Richard Kuhn, D., Kacker, Raghu, Simos, Dimitris E..  2021.  Combinatorially XSSing Web Application Firewalls. 2021 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). :85–94.
Cross-Site scripting (XSS) is a common class of vulnerabilities in the domain of web applications. As it re-mains prevalent despite continued efforts by practitioners and researchers, site operators often seek to protect their assets using web application firewalls (WAFs). These systems employ filtering mechanisms to intercept and reject requests that may be suitable to exploit XSS flaws and related vulnerabilities such as SQL injections. However, they generally do not offer complete protection and can often be bypassed using specifically crafted exploits. In this work, we evaluate the effectiveness of WAFs to detect XSS exploits. We develop an attack grammar and use a combinatorial testing approach to generate attack vectors. We compare our vectors with conventional counterparts and their ability to bypass different WAFs. Our results show that the vectors generated with combinatorial testing perform equal or better in almost all cases. They further confirm that most of the rule sets evaluated in this work can be bypassed by at least one of these crafted inputs.
2022-03-01
Li, Pei, Wang, Longlong.  2021.  Combined Neural Network Based on Deep Learning for AMR. 2021 7th International Conference on Computer and Communications (ICCC). :1244–1248.
Automatic modulation recognition (AMR) plays an important role in cognitive radio and electronic reconnaissance applications. In order to solve the problem that the lack of modulation signal data sets, the labeled data sets are generated by the software radio equipment NI-USRP 2920 and LabVIEW software development tool. In this paper, a combined network based on deep learning is proposed to identify ten types of digital modulation signals. Convolutional neural network (CNN) and Inception network are trained on different data sets, respectively. We combine CNN with Inception network to distinguish different modulation signals well. Experimental results show that our proposed method can recognize ten types of digital modulation signals with high identification accuracy, even in scenarios with a low signal-to-noise ratio (SNR).
2022-08-12
Laird, James.  2021.  A Compositional Cost Model for the λ-calculus. 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). :1–13.
We describe a (time) cost model for the (call-by-value) λ-calculus based on a natural presentation of its game semantics: the cost of computing a finite approximant to the denotation of a term (its evaluation tree) is the size of its smallest derivation in the semantics. This measure has an optimality property enabling compositional reasoning about cost bounds: for any term A, context C[\_] and approximants a and c to the trees of A and C[A], the cost of computing c from C[A] is no more than the cost of computing a from A and c from C[a].Although the natural semantics on which it is based is nondeterministic, our cost model is reasonable: we describe a deterministic algorithm for recognizing evaluation tree approximants which satisfies it (up to a constant factor overhead) on a Random Access Machine. This requires an implementation of the λv-calculus on the RAM which is completely lazy: compositionality of costs entails that work done to evaluate any part of a term cannot be duplicated. This is achieved by a novel implementation of graph reduction for nameless explicit substitutions, to which we compile the λv-calculus via a series of linear cost reductions.
2022-09-30
Min, Huang, Li, Cheng Yun.  2021.  Construction of information security risk assessment model based on static game. 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT). :647–650.
Game theory is a branch of modern mathematics, which is a mathematical method to study how decision-makers should make decisions in order to strive for the maximum interests in the process of competition. In this paper, from the perspective of offensive and defensive confrontation, using game theory for reference, we build a dynamic evaluation model of information system security risk based on static game model. By using heisani transformation, the uncertainty of strategic risk of offensive and defensive sides is transformed into the uncertainty of each other's type. The security risk of pure defense strategy and mixed defense strategy is analyzed quantitatively, On this basis, an information security risk assessment algorithm based on static game model is designed.
2022-02-07
Gao, Tan, Li, Xudong, Chen, Wen.  2021.  Co-training For Image-Based Malware Classification. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :568–572.
A malware detection model based on semi-supervised learning is proposed in the paper. Our model includes mainly three parts: malware visualization, feature extraction, and classification. Firstly, the malware visualization converts malware into grayscale images; then the features of the images are extracted to reflect the coding patterns of malware; finally, a collaborative learning model is applied to malware detections using both labeled and unlabeled software samples. The proposed model was evaluated based on two commonly used benchmark datasets. The results demonstrated that compared with traditional methods, our model not only reduced the cost of sample labeling but also improved the detection accuracy through incorporating unlabeled samples into the collaborative learning process, thereby achieved higher classification performance.
2022-09-09
Jacq, Olivier, Salazar, Pablo Giménez, Parasuraman, Kamban, Kuusijärvi, Jarkko, Gkaniatsou, Andriana, Latsa, Evangelia, Amditis, Angelos.  2021.  The Cyber-MAR Project: First Results and Perspectives on the Use of Hybrid Cyber Ranges for Port Cyber Risk Assessment. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :409—414.
With over 80% of goods transportation in volume carried by sea, ports are key infrastructures within the logistics value chain. To address the challenges of the globalized and competitive economy, ports are digitizing at a fast pace, evolving into smart ports. Consequently, the cyber-resilience of ports is essential to prevent possible disruptions to the economic supply chain. Over the last few years, there has been a significant increase in the number of disclosed cyber-attacks on ports. In this paper, we present the capabilities of a high-end hybrid cyber range for port cyber risks awareness and training. By describing a specific port use-case and the first results achieved, we draw perspectives for the use of cyber ranges for the training of port actors in cyber crisis management.
2022-07-29
Chen, Keren, Zheng, Nan, Cai, Qiyuan, Li, Yinan, Lin, Changyong, Li, Yuanfei.  2021.  Cyber-Physical Power System Vulnerability Analysis Based on Complex Network Theory. 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE). :482—486.
The vulnerability assessment of the cyber-physical power system based on complex network theory is applied in this paper. The influence of the power system statistics upon the system vulnerability is studied based on complex network theory. The electrical betweenness is defined to suitably describe the power system characteristics. The real power systems are utilized as examples to analyze the distribution of the degree and betweenness of the power system as a complex network. The topology model of the cyber-physical power system is formed, and the static analysis is implemented to the study of the cyber-physical power system structural vulnerability. The IEEE 300 bus test system is selected to verify the model.
2022-04-12
Ma, Haoyu, Cao, Jianqiu, Mi, Bo, Huang, Darong, Liu, Yang, Zhang, Zhenyuan.  2021.  Dark web traffic detection method based on deep learning. 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS). :842—847.
Network traffic detection is closely related to network security, and it is also a hot research topic now. With the development of encryption technology, traffic detection has become more and more difficult, and many crimes have occurred on the dark web, so how to detect dark web traffic is the subject of this study. In this paper, we proposed a dark web traffic(Tor traffic) detection scheme based on deep learning and conducted experiments on public data sets. By analyzing the results of the experiment, our detection precision rate reached 95.47%.
2022-01-25
Rexha, Hergys, Lafond, Sébastien.  2021.  Data Collection and Utilization Framework for Edge AI Applications. 2021 IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for AI (WAIN). :105—108.
As data being produced by IoT applications continues to explode, there is a growing need to bring computing power closer to the source of the data to meet the response-time, power dissipation and cost goals of performance-critical applications in various domains like Industrial Internet of Things (IIoT), Automated Driving, Medical Imaging or Surveillance among others. This paper proposes a data collection and utilization framework that allows runtime platform and application data to be sent to an edge and cloud system via data collection agents running close to the platform. Agents are connected to a cloud system able to train AI models to improve overall energy efficiency of an AI application executed on a edge platform. In the implementation part we show the benefits of FPGA-based platform for the task of object detection. Furthermore we show that it is feasible to collect relevant data from an FPGA platform, transmit the data to a cloud system for processing and receiving feedback actions to execute an edge AI application energy efficiently. As future work we foresee the possibility to train, deploy and continuously improve a base model able to efficiently adapt the execution of edge applications.
2022-04-19
Lee, Taerim, Moon, Ho-Se, Jang, Juwook.  2021.  Data Encryption Method Using CP-ABE with Symmetric Key Algorithm in Blockchain Network. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :1371–1373.
This paper proposes a method of encrypting data stored in the blockchain network by applying ciphertext-policy attribute-based encryption (CP-ABE) and symmetric key algorithm. This method protects the confidentiality and privacy of data that is not protected in blockchain networks, and stores data in a more efficient way than before. The proposed model has the same characteristics of CP-ABE and has a faster processing speed than when only CP-ABE is used.
2022-08-26
Lewis, William E., Knapp, Patrick F., Slutz, Stephen A., Schmit, Paul F., Chandler, Gordon A., Gomez, Matthew R., Harvey-Thompson, Adam J., Mangan, Michael A., Ampleford, David J., Beckwith, Kristian.  2021.  Deep Learning Enabled Assessment of Magnetic Confinement in Magnetized Liner Inertial Fusion. 2021 IEEE International Conference on Plasma Science (ICOPS). :1—1.
Magnetized Liner Inertial Fusion (MagLIF) is a magneto-inertial fusion (MIF) concept being studied on the Z-machine at Sandia National Laboratories. MagLIF relies on quasi-adiabatic heating of a gaseous deuterium (DD) fuel and flux compression of a background axially oriented magnetic field to achieve fusion relevant plasma conditions. The magnetic flux per fuel radial extent determines the confinement of charged fusion products and is thus of fundamental interest in understanding MagLIF performance. It was recently shown that secondary DT neutron spectra and yields are sensitive to the magnetic field conditions within the fuel, and thus provide a means by which to characterize the magnetic confinement properties of the fuel. 1 , 2 , 3 We utilize an artificial neural network to surrogate the physics model of Refs. [1] , [2] , enabling Bayesian inference of the magnetic confinement parameter for a series of MagLIF experiments that systematically vary the laser preheat energy deposited in the target. This constitutes the first ever systematic experimental study of the magnetic confinement properties as a function of fundamental inputs on any neutron-producing MIF platform. We demonstrate that the fuel magnetization decreases with deposited preheat energy in a fashion consistent with Nernst advection of the magnetic field out of the hot fuel and diffusion into the target liner.
2022-04-25
Ren, Jing, Xia, Feng, Liu, Yemeng, Lee, Ivan.  2021.  Deep Video Anomaly Detection: Opportunities and Challenges. 2021 International Conference on Data Mining Workshops (ICDMW). :959–966.
Anomaly detection is a popular and vital task in various research contexts, which has been studied for several decades. To ensure the safety of people’s lives and assets, video surveillance has been widely deployed in various public spaces, such as crossroads, elevators, hospitals, banks, and even in private homes. Deep learning has shown its capacity in a number of domains, ranging from acoustics, images, to natural language processing. However, it is non-trivial to devise intelligent video anomaly detection systems cause anomalies significantly differ from each other in different application scenarios. There are numerous advantages if such intelligent systems could be realised in our daily lives, such as saving human resources in a large degree, reducing financial burden on the government, and identifying the anomalous behaviours timely and accurately. Recently, many studies on extending deep learning models for solving anomaly detection problems have emerged, resulting in beneficial advances in deep video anomaly detection techniques. In this paper, we present a comprehensive review of deep learning-based methods to detect the video anomalies from a new perspective. Specifically, we summarise the opportunities and challenges of deep learning models on video anomaly detection tasks, respectively. We put forth several potential future research directions of intelligent video anomaly detection system in various application domains. Moreover, we summarise the characteristics and technical problems in current deep learning methods for video anomaly detection.
Li, Yuezun, Zhang, Cong, Sun, Pu, Ke, Lipeng, Ju, Yan, Qi, Honggang, Lyu, Siwei.  2021.  DeepFake-o-meter: An Open Platform for DeepFake Detection. 2021 IEEE Security and Privacy Workshops (SPW). :277–281.
In recent years, the advent of deep learning-based techniques and the significant reduction in the cost of computation resulted in the feasibility of creating realistic videos of human faces, commonly known as DeepFakes. The availability of open-source tools to create DeepFakes poses as a threat to the trustworthiness of the online media. In this work, we develop an open-source online platform, known as DeepFake-o-meter, that integrates state-of-the-art DeepFake detection methods and provide a convenient interface for the users. We describe the design and function of DeepFake-o-meter in this work.
2022-05-19
Zhang, Xiangyu, Yang, Jianfeng, Li, Xiumei, Liu, Minghao, Kang, Ruichun, Wang, Runmin.  2021.  Deeply Multi-channel guided Fusion Mechanism for Natural Scene Text Detection. 2021 7th International Conference on Big Data and Information Analytics (BigDIA). :149–156.
Scene text detection methods have developed greatly in the past few years. However, due to the limitation of the diversity of the text background of natural scene, the previous methods often failed when detecting more complicated text instances (e.g., super-long text and arbitrarily shaped text). In this paper, a text detection method based on multi -channel bounding box fusion is designed to address the problem. Firstly, the convolutional neural network is used as the basic network for feature extraction, including shallow text feature map and deep semantic text feature map. Secondly, the whole convolutional network is used for upsampling of feature map and fusion of feature map at each layer, so as to obtain pixel-level text and non-text classification results. Then, two independent text detection boxes channels are designed: the boundary box regression channel and get the bounding box directly on the score map channel. Finally, the result is obtained by combining multi-channel boundary box fusion mechanism with the detection box of the two channels. Experiments on ICDAR2013 and ICDAR2015 demonstrate that the proposed method achieves competitive results in scene text detection.
2022-04-13
Sun, He, Liu, Rongke, Tian, Kuangda, Zou, Tong, Feng, Baoping.  2021.  Deletion Error Correction based on Polar Codes in Skyrmion Racetrack Memory. 2021 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Skyrmion racetrack memory (Sk-RM) is a new storage technology in which skyrmions are used to represent data bits to provide high storage density. During the reading procedure, the skyrmion is driven by a current and sensed by a fixed read head. However, synchronization errors may happen if the skyrmion does not pass the read head on time. In this paper, a polar coding scheme is proposed to correct the synchronization errors in the Sk-RM. Firstly, we build two error correction models for the reading operation of Sk-RM. By connecting polar codes with the marker codes, the number of deletion errors can be determined. We also redesign the decoding algorithm to recover the information bits from the readout sequence, where a tighter bound of the segmented deletion errors is derived and a novel parity check strategy is designed for better decoding performance. Simulation results show that the proposed coding scheme can efficiently improve the decoding performance.
2022-05-06
Wani, Aachal, Sonekar, Shrikant, Lokhande, Trupti.  2021.  Design and Development of Collaborative Approach for Integrity Auditing and Data Recovery based on Fingerprint Identification for Secure Cloud Storage. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1–6.
In a Leading field of Information Technology moreover make information Security a unified piece of it. To manage security, Authentication assumes a significant part. Biometric is the physical unique identification as well as Authentication for third party. We are proposed the Security model for preventing many attacks so we are used Inner most layer as a 3DES (Triple Encryption standard) Cryptography algorithm that is providing 3-key protection as 64-bit And the outer most layer used the MD5 (Message Digest) Algorithm. i. e. Providing 128 – bit protection. As well as we are using Fingerprint Identification as a physical Security that used in third party remote integrity auditing, and remote data integrity auditing is proposed to ensure the uprightness of the information put away in the cloud. Data Storage of cloud services has expanded paces of acknowledgment because of their adaptability and the worry of the security and privacy levels. The large number of integrity and security issues that arise depends on the difference between the customer and the service provider in the sense of an external auditor. The remote data integrity auditing is at this point prepared to be viably executed. In the meantime, the proposed scheme is depends on identity-based cryptography, which works on the convoluted testament the executives. The safety investigation and the exhibition assessment show that the planned property is safe and productive.
2022-04-22
Bura, Romie Oktovianus, Lahallo, Cardian Althea Stephanie.  2021.  Design and Development of Digital Image Security Using AES Algorithm with Discrete Wavelet Transformation Method. 2021 6th International Workshop on Big Data and Information Security (IWBIS). :153—158.
Network Centric Warfare (NCW) is a design that supports information excellence for the concept of military operations. Network Centric Warfare is currently being developed as the basis for the operating concept, namely multidimensional operations. TNI operations do not rely on conventional warfare. TNI operations must work closely with the TNI Puspen team, territorial intelligence, TNI cyber team, and support task force. Sending digital images sent online requires better techniques to maintain confidentiality. The purpose of this research is to design digital image security with AES cryptography and discrete wavelet transform method on interoperability and to utilize and study discrete wavelet transform method and AES algorithm on interoperability for digital image security. The AES cryptography technique in this study is used to protect and maintain the confidentiality of the message while the Discrete Wavelet Transform in this study is used to reduce noise by applying a discrete wavelet transform, which consists of three main steps, namely: image decomposition, thresholding process and image reconstruction. The result of this research is that Digital Image Security to support TNI interoperability has been produced using the C \# programming language framework. NET and Xampp to support application development. Users can send data in the form of images. Discrete Wavelet Transformation in this study is used to find the lowest value against the threshold so that the resulting level of security is high. Testing using the AESS algorithm to encrypt and decrypt image files using key size and block size.
2022-11-18
Juan, Li, Lina, Yan, Jingyu, Wang.  2021.  Design and Implementation of a Risk Assessment System for Information Communication Equipment. 2021 2nd International Conference on Computer Communication and Network Security (CCNS). :10—15.
In order to ensure the security of information assets and standardize the risk assessment and inspection workflow of information assets. This paper has designed and developed a risk assessment system for information and communication equipment with simple operation, offline assessment, and diversified external interfaces. The process of risk assessment can be realized, which effectively improves the efficiency of risk assessment.
Sun, Xiaohan, Cheng, Yunchang, Qu, Xiaojie, Li, Hang.  2021.  Design and Implementation of Security Test Pipeline based on DevSecOps. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 4:532—535.
In recent years, a variety of information security incidents emerge in endlessly, with different types. Security vulnerability is an important factor leading to the security risk of information system, and is the most common and urgent security risk in information system. The research goal of this paper is to seamlessly integrate the security testing process and the integration process of software construction, deployment, operation and maintenance. Through the management platform, the security testing results are uniformly managed and displayed in reports, and the project management system is introduced to develop, regress and manage the closed-loop security vulnerabilities. Before the security vulnerabilities cause irreparable damage to the information system, the security vulnerabilities are found and analyzed Full vulnerability, the formation of security vulnerability solutions to minimize the threat of security vulnerabilities to the information system.
2022-05-10
Bu, Xiande, Liu, Chuan, Yao, Jiming.  2021.  Design of 5G-oriented Computing Framework for The Edge Agent Used in Power IoT. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:2076–2080.
The goal of the edge computing framework is to solve the problem of management and control in the access of massive 5G terminals in the power Internet of things. Firstly, this paper analyzes the needs of IOT agent in 5G ubiquitous connection, equipment management and control, intelligent computing and other aspects. In order to meet with these needs, paper develops the functions and processes of the edge computing framework, including unified access of heterogeneous devices, protocol adaptation, edge computing, cloud edge collaboration, security control and so on. Finally, the performance of edge computing framework is verified by the pressure test of 5G wireless ubiquitous connection.
2022-05-06
Fu, Shijian, Tong, Ling, Gong, Xun, Gao, Xinyi, Wang, Peicheng, Gao, Bo, Liu, Yukai, Zhang, Kun, Li, Hao, Zhou, Weilai et al..  2021.  Design of Intermediate Frequency Module of Microwave Radiometer Based on Polyphase Filter Bank. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. :7984–7987.
In this work, an IF(intermediate frequency) module of a hyperspectral microwave radiometer based on a polyphase filter bank (PFB) and Discrete Fourier Transformation (DFT)is introduced. The IF module is designed with an 800MSPS sampling-rate ADC and a Xilinx Virtex-7 FPGA. The module can achieve 512 channels and a bandwidth of 400M and process all the sampled data in real-time. The test results of this module are given and analyzed, such as linearity, accuracy, etc. It can be used in various applications of microwave remote sensing. The system has strong expandability.
2022-03-08
Choi, Kangil, Lee, Jung-Hee.  2021.  A Design of real-time public IoT data distribution platform over Data-Centric Networking. 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :1–2.
Data-Centric Networking (DCN) is a research project based on Named Data Networking (NDN), which focuses on the high-performance name-based forwarder, distributed pub/sub data distribution platform, distributed network storage, in-network processing platform, and blockchain-based data trading platform. In this paper, we present a design of real-time public Internet of Things (IoT) data distribution platform which is based on a Data-Centric Networking (DCN) distributed pub/sub data distribution platform.
2022-05-23
Wen, Kaiyuan, Gang, Su, Li, Zhifeng, Zou, Zhexiang.  2021.  Design of Remote Control Intelligent Vehicle System with Three-dimensional Immersion. 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE). :287–290.
The project uses 3D immersive technology to innovatively apply virtual reality technology to the monitoring field, and proposes the concept and technical route of remote 3D immersive intelligent control. A design scheme of a three-dimensional immersive remote somatosensory intelligent controller is proposed, which is applied to the remote three-dimensional immersive control of a crawler mobile robot, and the test and analysis of the principle prototype are completed.