Biblio

Found 4176 results

Filters: First Letter Of Last Name is M  [Clear All Filters]
2023-01-20
Nightingale, James S., Wang, Yingjie, Zobiri, Fairouz, Mustafa, Mustafa A..  2022.  Effect of Clustering in Federated Learning on Non-IID Electricity Consumption Prediction. 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1—5.

When applied to short-term energy consumption forecasting, the federated learning framework allows for the creation of a predictive model without sharing raw data. There is a limit to the accuracy achieved by standard federated learning due to the heterogeneity of the individual clients' data, especially in the case of electricity data, where prediction of peak demand is a challenge. A set of clustering techniques has been explored in the literature to improve prediction quality while maintaining user privacy. These studies have mainly been conducted using sets of clients with similar attributes that may not reflect real-world consumer diversity. This paper explores, implements and compares these clustering techniques for privacy-preserving load forecasting on a representative electricity consumption dataset. The experimental results demonstrate the effects of electricity consumption heterogeneity on federated forecasting and a non-representative sample's impact on load forecasting.

2023-06-29
Matheven, Anand, Kumar, Burra Venkata Durga.  2022.  Fake News Detection Using Deep Learning and Natural Language Processing. 2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI). :11–14.

The rise of social media has brought the rise of fake news and this fake news comes with negative consequences. With fake news being such a huge issue, efforts should be made to identify any forms of fake news however it is not so simple. Manually identifying fake news can be extremely subjective as determining the accuracy of the information in a story is complex and difficult to perform, even for experts. On the other hand, an automated solution would require a good understanding of NLP which is also complex and may have difficulties producing an accurate output. Therefore, the main problem focused on this project is the viability of developing a system that can effectively and accurately detect and identify fake news. Finding a solution would be a significant benefit to the media industry, particularly the social media industry as this is where a large proportion of fake news is published and spread. In order to find a solution to this problem, this project proposed the development of a fake news identification system using deep learning and natural language processing. The system was developed using a Word2vec model combined with a Long Short-Term Memory model in order to showcase the compatibility of the two models in a whole system. This system was trained and tested using two different dataset collections that each consisted of one real news dataset and one fake news dataset. Furthermore, three independent variables were chosen which were the number of training cycles, data diversity and vector size to analyze the relationship between these variables and the accuracy levels of the system. It was found that these three variables did have a significant effect on the accuracy of the system. From this, the system was then trained and tested with the optimal variables and was able to achieve the minimum expected accuracy level of 90%. The achieving of this accuracy levels confirms the compatibility of the LSTM and Word2vec model and their capability to be synergized into a single system that is able to identify fake news with a high level of accuracy.

ISSN: 2640-0146

2023-07-21
Mukherjee, Pratyusa, Kumar Barik, Rabindra.  2022.  Fog-QKD:Towards secure geospatial data sharing mechanism in geospatial fog computing system based on Quantum Key Distribution. 2022 OITS International Conference on Information Technology (OCIT). :485—490.

Geospatial fog computing system offers various benefits as a platform for geospatial computing services closer to the end users, including very low latency, good mobility, precise position awareness, and widespread distribution. In recent years, it has grown quickly. Fog nodes' security is susceptible to a number of assaults, including denial of service and resource abuse, because to their widespread distribution, complex network environments, and restricted resource availability. This paper proposes a Quantum Key Distribution (QKD)-based geospatial quantum fog computing environment that offers a symmetric secret key negotiation protocol that can preserve information-theoretic security. In QKD, after being negotiated between any two fog nodes, the secret keys can be given to several users in various locations to maintain forward secrecy and long-term protection. The new geospatial quantum fog computing environment proposed in this work is able to successfully withstand a variety of fog computing assaults and enhances information security.

Muhammad Nabi, Masooma, Shah, Munam Ali.  2022.  A Fuzzy Approach to Trust Management in Fog Computing. 2022 24th International Multitopic Conference (INMIC). :1—6.

The Internet of Things (IoT) technology has revolutionized the world where anything is smartly connected and is accessible. The IoT makes use of cloud computing for processing and storing huge amounts of data. In some way, the concept of fog computing has emerged between cloud and IoT devices to address the issue of latency. When a fog node exchanges data for completing a particular task, there are many security and privacy risks. For example, offloading data to a rogue fog node might result in an illegal gathering or modification of users' private data. In this paper, we rely on trust to detect and detach bad fog nodes. We use a Mamdani fuzzy method and we consider a hospital scenario with many fog servers. The aim is to identify the malicious fog node. Metrics such as latency and distance are used in evaluating the trustworthiness of each fog server. The main contribution of this study is identifying how fuzzy logic configuration could alter the trust value of fog nodes. The experimental results show that our method detects the bad fog device and establishes its trustworthiness in the given scenario.

2023-01-13
Belaïd, Sonia, Mercadier, Darius, Rivain, Matthieu, Taleb, Abdul Rahman.  2022.  IronMask: Versatile Verification of Masking Security. 2022 IEEE Symposium on Security and Privacy (SP). :142—160.

This paper introduces lronMask, a new versatile verification tool for masking security. lronMask is the first to offer the verification of standard simulation-based security notions in the probing model as well as recent composition and expandability notions in the random probing model. It supports any masking gadgets with linear randomness (e.g. addition, copy and refresh gadgets) as well as quadratic gadgets (e.g. multiplication gadgets) that might include non-linear randomness (e.g. by refreshing their inputs), while providing complete verification results for both types of gadgets. We achieve this complete verifiability by introducing a new algebraic characterization for such quadratic gadgets and exhibiting a complete method to determine the sets of input shares which are necessary and sufficient to perform a perfect simulation of any set of probes. We report various benchmarks which show that lronMask is competitive with state-of-the-art verification tools in the probing model (maskVerif, scVerif, SILVEH, matverif). lronMask is also several orders of magnitude faster than VHAPS -the only previous tool verifying random probing composability and expandability- as well as SILVEH -the only previous tool providing complete verification for quadratic gadgets with nonlinear randomness. Thanks to this completeness and increased performance, we obtain better bounds for the tolerated leakage probability of state-of-the-art random probing secure compilers.

2023-03-17
ELMansy, Hossam, Metwally, Khaled, Badran, Khaled.  2022.  MPTCP-based Security Schema in Fog Computing. 2022 13th International Conference on Electrical Engineering (ICEENG). :134–138.

Recently, Cloud Computing became one of today’s great innovations for provisioning Information Technology (IT) resources. Moreover, a new model has been introduced named Fog Computing, which addresses Cloud Computing paradigm issues regarding time delay and high cost. However, security challenges are still a big concern about the vulnerabilities to both Cloud and Fog Computing systems. Man- in- the- Middle (MITM) is considered one of the most destructive attacks in a Fog Computing context. Moreover, it’s very complex to detect MiTM attacks as it is performed passively at the Software-Defined Networking (SDN) level, also the Fog Computing paradigm is ideally suitable for MITM attacks. In this paper, a MITM mitigation scheme will be proposed consisting of an SDN network (Fog Leaders) which controls a layer of Fog Nodes. Furthermore, Multi-Path TCP (MPTCP) has been used between all edge devices and Fog Nodes to improve resource utilization and security. The proposed solution performance evaluation has been carried out in a simulation environment using Mininet, Ryu SDN controller and Multipath TCP (MPTCP) Linux kernel. The experimental results showed that the proposed solution improves security, network resiliency and resource utilization without any significant overheads compared to the traditional TCP implementation.

2022-12-01
Chandwani, Ashwin, Dey, Saikat, Mallik, Ayan.  2022.  Parameter-Variation-Tolerant Robust Current Sensorless Control of a Single-Phase Boost PFC. IEEE Journal of Emerging and Selected Topics in Industrial Electronics. 3:933—945.

With the objective to eliminate the input current sensor in a totem-pole boost power factor corrector (PFC) for its low-cost design, a novel discretized sampling-based robust control scheme is proposed in this work. The proposed control methodology proves to be beneficial due to its ease of implementation and its ability to support high-frequency operation, while being able to eliminate one sensor and, thus, enhancing reliability and cost-effectiveness. In addition, detailed closed-loop stability analysis is carried out for the controller in discrete domain to ascertain brisk dynamic operation when subjected to sudden load fluctuations. To establish the robustness of the proposed control scheme, a detailed sensitivity analysis of the closed-loop performance metrics with respect to undesired changes and inherent uncertainty in system parameters is presented in this article. A comparison with the state-of-the-art (SOA) methods is provided, and conclusive results in terms of better dynamic performance are also established. To verify and elaborate on the specifics of the proposed scheme, a detailed simulation study is conducted, and the results show 25% reduction in response time as compared to SOA approaches. A 500-W boost PFC prototype is developed and tested with the proposed control scheme to evaluate and benchmark the system steady-state and dynamic performance. A total harmonic distortion of 1.68% is obtained at the rated load with a resultant power factor of 0.998 (lag), which proves the effectiveness and superiority of the proposed control scheme.

Conference Name: IEEE Journal of Emerging and Selected Topics in Industrial Electronics

2023-03-31
Magfirawaty, Magfirawaty, Budi Setiawan, Fauzan, Yusuf, Muhammad, Kurniandi, Rizki, Nafis, Raihan Fauzan, Hayati, Nur.  2022.  Principal Component Analysis and Data Encryption Model for Face Recognition System. 2022 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS). :381–386.

Face recognition is a biometric technique that uses a computer or machine to facilitate the recognition of human faces. The advantage of this technique is that it can detect faces without direct contact with the device. In its application, the security of face recognition data systems is still not given much attention. Therefore, this study proposes a technique for securing data stored in the face recognition system database. It implements the Viola-Jones Algorithm, the Kanade-Lucas-Tomasi Algorithm (KLT), and the Principal Component Analysis (PCA) algorithm by applying a database security algorithm using XOR encryption. Several tests and analyzes have been performed with this method. The histogram analysis results show no visual information related to encrypted images with plain images. In addition, the correlation value between the encrypted and plain images is weak, so it has high security against statistical attacks with an entropy value of around 7.9. The average time required to carry out the introduction process is 0.7896 s.

2023-01-20
Djeachandrane, Abhishek, Hoceini, Said, Delmas, Serge, Duquerrois, Jean-Michel, Mellouk, Abdelhamid.  2022.  QoE-based Situational Awareness-Centric Decision Support for Network Video Surveillance. ICC 2022 - IEEE International Conference on Communications. :335–340.

Control room video surveillance is an important source of information for ensuring public safety. To facilitate the process, a Decision-Support System (DSS) designed for the security task force is vital and necessary to take decisions rapidly using a sea of information. In case of mission critical operation, Situational Awareness (SA) which consists of knowing what is going on around you at any given time plays a crucial role across a variety of industries and should be placed at the center of our DSS. In our approach, SA system will take advantage of the human factor thanks to the reinforcement signal whereas previous work on this field focus on improving knowledge level of DSS at first and then, uses the human factor only for decision-making. In this paper, we propose a situational awareness-centric decision-support system framework for mission-critical operations driven by Quality of Experience (QoE). Our idea is inspired by the reinforcement learning feedback process which updates the environment understanding of our DSS. The feedback is injected by a QoE built on user perception. Our approach will allow our DSS to evolve according to the context with an up-to-date SA.

Fan, Jinqiang, Xu, Yonggang, Ma, Jing.  2022.  Research on Security Classification and Classification Method of Power Grid Data. 2022 6th International Conference on Smart Grid and Smart Cities (ICSGSC). :72—76.

In order to solve the problem of untargeted data security grading methods in the process of power grid data governance, this paper analyzes the mainstream data security grading standards at home and abroad, investigates and sorts out the characteristics of power grid data security grading requirements, and proposes a method that considers national, social, and A grid data security classification scheme for the security impact of four dimensions of individuals and enterprises. The plan determines the principle of power grid data security classification. Based on the basic idea of “who will be affected to what extent and to what extent when the power grid data security is damaged”, it defines three classification factors that need to be considered: the degree of impact, the scope of influence, and the objects of influence, and the power grid data is divided into five security levels. In the operation stage of power grid data security grading, this paper sorts out the experience and gives the recommended grading process. This scheme basically conforms to the status quo of power grid data classification, and lays the foundation for power grid data governance.

2023-03-31
L, Shammi, Milind, Emilin Shyni, C., Ul Nisa, Khair, Bora, Ravi Kumar, Saravanan, S..  2022.  Securing Biometric Data with Optimized Share Creation and Visual Cryptography Technique. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :673–679.

Biometric security is the fastest growing area that receives considerable attention over the past few years. Digital hiding and encryption technologies provide an effective solution to secure biometric information from intentional or accidental attacks. Visual cryptography is the approach utilized for encrypting the information which is in the form of visual information for example images. Meanwhile, the biometric template stored in the databases are generally in the form of images, the visual cryptography could be employed effectively for encrypting the template from the attack. This study develops a share creation with improved encryption process for secure biometric verification (SCIEP-SBV) technique. The presented SCIEP-SBV technique majorly aims to attain security via encryption and share creation (SC) procedure. Firstly, the biometric images undergo SC process to produce several shares. For encryption process, homomorphic encryption (HE) technique is utilized in this work. To further improve the secrecy, an improved bald eagle search (IBES) approach was exploited in this work. The simulation values of the SCIEP-SBV system are tested on biometric images. The extensive comparison study demonstrated the improved outcomes of the SCIEP-SBV technique over compared methods.

2022-12-09
Doebbert, Thomas Robert, Fischer, Florian, Merli, Dominik, Scholl, Gerd.  2022.  On the Security of IO-Link Wireless Communication in the Safety Domain. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1—8.

Security is an essential requirement of Industrial Control System (ICS) environments and its underlying communication infrastructure. Especially the lowest communication level within Supervisory Control and Data Acquisition (SCADA) systems - the field level - commonly lacks security measures.Since emerging wireless technologies within field level expose the lowest communication infrastructure towards potential attackers, additional security measures above the prevalent concept of air-gapped communication must be considered.Therefore, this work analyzes security aspects for the wireless communication protocol IO-Link Wireless (IOLW), which is commonly used for sensor and actuator field level communication. A possible architecture for an IOLW safety layer has already been presented recently [1].In this paper, the overall attack surface of IOLW within its typical environment is analyzed and attack preconditions are investigated to assess the effectiveness of different security measures. Additionally, enhanced security measures are evaluated for the communication systems and the results are summarized. Also, interference of security measures and functional safety principles within the communication are investigated, which do not necessarily complement one another but may also have contradictory requirements.This work is intended to discuss and propose enhancements of the IOLW standard with additional security considerations in future implementations.

2023-01-20
Yong, Li, Mu, Chen, ZaoJian, Dai, Lu, Chen.  2022.  Security situation awareness method of power mobile application based on big data architecture. 2022 5th International Conference on Data Science and Information Technology (DSIT). :1–6.

According to the characteristics of security threats and massive users in power mobile applications, a mobile application security situational awareness method based on big data architecture is proposed. The method uses open-source big data technology frameworks such as Kafka, Flink, Elasticsearch, etc. to complete the collection, analysis, storage and visual display of massive power mobile application data, and improve the throughput of data processing. The security situation awareness method of power mobile application takes the mobile terminal threat index as the core, divides the risk level for the mobile terminal, and predicts the terminal threat index through support vector machine regression algorithm (SVR), so as to construct the security profile of the mobile application operation terminal. Finally, through visualization services, various data such as power mobile applications and terminal assets, security operation statistics, security strategies, and alarm analysis are displayed to guide security operation and maintenance personnel to carry out power mobile application security monitoring and early warning, banning disposal and traceability analysis and other decision-making work. The experimental analysis results show that the method can meet the requirements of security situation awareness for threat assessment accuracy and response speed, and the related results have been well applied in a power company.

Milov, Oleksandr, Khvostenko, Vladyslav, Natalia, Voropay, Korol, Olha, Zviertseva, Nataliia.  2022.  Situational Control of Cyber Security in Socio-Cyber-Physical Systems. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–6.

The features of socio-cyber-physical systems are presented, which dictate the need to revise traditional management methods and transform the management system in such a way that it takes into account the presence of a person both in the control object and in the control loop. The use of situational control mechanisms is proposed. The features of this approach and its comparison with existing methods of situational awareness are presented. The comparison has demonstrated wider possibilities and scope for managing socio-cyber-physical systems. It is recommended to consider a wider class of types of relations that exist in socio-cyber-physical systems. It is indicated that such consideration can be based on the use of pseudo-physical logics considered in situational control. It is pointed out that it is necessary to design a classifier of situations (primarily in cyberspace), instead of traditional classifiers of threats and intruders.

2021-12-21
David J. Hess.  2022.  Undone Science and Smart Cities: Civil Society Perspectives on Risk and Emerging Technologies. Knowledge and Civil Society. :57–73.

This study contributes to the analysis of civil society and knowledge by examining mobilizations by civil society organizations and grassroots networks in opposition to wireless smart meters in the United States. Three types of mobilizations are reviewed: grassroots anti-smart-meter networks, privacy organizations, and organizations that advocate for reduced exposure to non-ionizing electromagnetic fields. The study shows different relationships to scientific knowledge that include publicizing risks and conducting citizen science, identifying non-controversial areas of future research, and pointing to deeper problems of undone science (a particular type of non-knowledge that emerges when actors mobilize in the public interest and find an absence or low volume of research that could have been used to support their concerns). By comparing different types of knowledge claims made by the civil society organizations and networks, the study examines the conditions under which mobilized civil society generates positive responses from incumbent organizations versus resistance and undone science.

2023-03-31
Hofbauer, Heinz, Martínez-Díaz, Yoanna, Luevano, Luis Santiago, Méndez-Vázquez, Heydi, Uhl, Andreas.  2022.  Utilizing CNNs for Cryptanalysis of Selective Biometric Face Sample Encryption. 2022 26th International Conference on Pattern Recognition (ICPR). :892–899.

When storing face biometric samples in accordance with ISO/IEC 19794 as JPEG2000 encoded images, it is necessary to encrypt them for the sake of users’ privacy. Literature suggests selective encryption of JPEG2000 images as fast and efficient method for encryption, the trade-off is that some information is left in plaintext. This could be used by an attacker, in case the encrypted biometric samples are leaked. In this work, we will attempt to utilize a convolutional neural network to perform cryptanalysis of the encryption scheme. That is, we want to assess if there is any information left in plaintext in the selectively encrypted face images which can be used to identify the person. The chosen approach is to train CNNs for biometric face recognition not only with plaintext face samples but additionally conduct a refinement training with partially encrypted data. If this system can successfully utilize encrypted face samples for biometric matching, we can show that the information left in encrypted biometric face samples is information actually usable for biometric recognition.The method works and we can show that a supposedly secure biometric sample still contains identifying information on average over the whole database.

ISSN: 2831-7475

2023-02-02
Pujar, Saurabh, Zheng, Yunhui, Buratti, Luca, Lewis, Burn, Morari, Alessandro, Laredo, Jim, Postlethwait, Kevin, Görn, Christoph.  2022.  Varangian: A Git Bot for Augmented Static Analysis. 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR). :766–767.

The complexity and scale of modern software programs often lead to overlooked programming errors and security vulnerabilities. Developers often rely on automatic tools, like static analysis tools, to look for bugs and vulnerabilities. Static analysis tools are widely used because they can understand nontrivial program behaviors, scale to millions of lines of code, and detect subtle bugs. However, they are known to generate an excess of false alarms which hinder their utilization as it is counterproductive for developers to go through a long list of reported issues, only to find a few true positives. One of the ways proposed to suppress false positives is to use machine learning to identify them. However, training machine learning models requires good quality labeled datasets. For this purpose, we developed D2A [3], a differential analysis based approach that uses the commit history of a code repository to create a labeled dataset of Infer [2] static analysis output.

2023-02-17
Amaya-Mejía, Lina María, Duque-Suárez, Nicolás, Jaramillo-Ramírez, Daniel, Martinez, Carol.  2022.  Vision-Based Safety System for Barrierless Human-Robot Collaboration. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :7331–7336.

Human safety has always been the main priority when working near an industrial robot. With the rise of Human-Robot Collaborative environments, physical barriers to avoiding collisions have been disappearing, increasing the risk of accidents and the need for solutions that ensure a safe Human-Robot Collaboration. This paper proposes a safety system that implements Speed and Separation Monitoring (SSM) type of operation. For this, safety zones are defined in the robot's workspace following current standards for industrial collaborative robots. A deep learning-based computer vision system detects, tracks, and estimates the 3D position of operators close to the robot. The robot control system receives the operator's 3D position and generates 3D representations of them in a simulation environment. Depending on the zone where the closest operator was detected, the robot stops or changes its operating speed. Three different operation modes in which the human and robot interact are presented. Results show that the vision-based system can correctly detect and classify in which safety zone an operator is located and that the different proposed operation modes ensure that the robot's reaction and stop time are within the required time limits to guarantee safety.

ISSN: 2153-0866

2023-01-20
Ghosh, Soumyadyuti, Chatterjee, Urbi, Dey, Soumyajit, Mukhopadhyay, Debdeep.  2022.  Is the Whole lesser than its Parts? Breaking an Aggregation based Privacy aware Metering Algorithm 2022 25th Euromicro Conference on Digital System Design (DSD). :921—929.

Smart metering is a mechanism through which fine-grained electricity usage data of consumers is collected periodically in a smart grid. However, a growing concern in this regard is that the leakage of consumers' consumption data may reveal their daily life patterns as the state-of-the-art metering strategies lack adequate security and privacy measures. Many proposed solutions have demonstrated how the aggregated metering information can be transformed to obscure individual consumption patterns without affecting the intended semantics of smart grid operations. In this paper, we expose a complete break of such an existing privacy preserving metering scheme [10] by determining individual consumption patterns efficiently, thus compromising its privacy guarantees. The underlying methodol-ogy of this scheme allows us to - i) retrieve the lower bounds of the privacy parameters and ii) establish a relationship between the privacy preserved output readings and the initial input readings. Subsequently, we present a rigorous experimental validation of our proposed attacking methodology using real-life dataset to highlight its efficacy. In summary, the present paper queries: Is the Whole lesser than its Parts? for such privacy aware metering algorithms which attempt to reduce the information leakage of aggregated consumption patterns of the individuals.

2022-12-01
Queirós, Mauro, Pereira, João Lobato, Leiras, Valdemar, Meireles, José, Fonseca, Jaime, Borges, João.  2022.  Work cell for assembling small components in PCB. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1—4.

Flexibility and speed in the development of new industrial machines are essential factors for the success of capital goods industries. When assembling a printed circuit board (PCB), since all the components are surface mounted devices (SMD), the whole process is automatic. However, in many PCBs, it is necessary to place components that are not SMDs, called pin through hole components (PTH), having to be inserted manually, which leads to delays in the production line. This work proposes and validates a prototype work cell based on a collaborative robot and vision systems whose objective is to insert these components in a completely autonomous or semi-autonomous way. Different tests were made to validate this work cell, showing the correct implementation and the possibility of replacing the human worker on this PCB assembly task.

2022-09-28
Samin Yaseer Mahmud, K. Virgil English, Seaver Thorn, William Enck, Adam Oest, Muhammad Saad.  2022.  Analysis of Payment Service Provider SDKs in Android. Annual Computer Security Applications Conference (ACSAC).

Payment Service Providers (PSPs) provide software development toolkits (SDKs) for integrating complex payment processing code into applications. Security weaknesses in payment SDKs can impact thousands of applications. In this work, we propose AARDroid for statically assessing payment SDKs against OWASP’s MASVS industry standard for mobile application security. In creating AARDroid, we adapted application-level requirements and program analysis tools for SDK-specific analysis, tailoring dataflow analysis for SDKs using domain-specific ontologies to infer the security semantics of application programming interfaces (APIs). We apply AARDroid to 50 payment SDKs and discover security weaknesses including saving unencrypted credit card information to files, use of insecure cryptographic primitives, insecure input methods for credit card information, and insecure use of WebViews. These results demonstrate the value of applying security analysis at the SDK granularity to prevent the widespread deployment of insecure code.

2023-06-09
Alyami, Areej, Sammon, David, Neville, Karen, Mahony, Carolanne.  2022.  The Critical Success Factors for Security Education, Training and Awareness (SETA) Programmes. 2022 Cyber Research Conference - Ireland (Cyber-RCI). :1—12.
This study explores the Critical Success Factors (CSFs) for Security Education, Training and Awareness (SETA) programmes. Data is gathered from 20 key informants (using semi-structured interviews) from various geographic locations including the Gulf nations, Middle East, USA, UK, and Ireland. The analysis of these key informant interviews produces eleven CSFs for SETA programmes. These CSFs are mapped along the phases of a SETA programme lifecycle (design, development, implementation, and evaluation).
2023-06-22
Ashodia, Namita, Makadiya, Kishan.  2022.  Detection and Mitigation of DDoS attack in Software Defined Networking: A Survey. 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). :1175–1180.

Software Defined Networking (SDN) is an emerging technology, which provides the flexibility in communicating among network. Software Defined Network features separation of the data forwarding plane from the control plane which includes controller, resulting centralized network. Due to centralized control, the network becomes more dynamic, and resources are managed efficiently and cost-effectively. Network Virtualization is transformation of network from hardware-based to software-based. Network Function Virtualization will permit implementation, adaptable provisioning, and even management of functions virtually. The use of virtualization of SDN networks permits network to strengthen the features of SDN and virtualization of NFV and has for that reason has attracted notable research awareness over the last few years. SDN platform introduces network security challenges. The network becomes vulnerable when a large number of requests is encapsulated inside packet\_in messages and passed to controller from switch for instruction, if it is not recognized by existing flow entry rules. which will limit the resources and become a bottleneck for the entire network leading to DDoS attack. It is necessary to have quick provisional methods to prevent the switches from breaking down. To resolve this problem, the researcher develops a mechanism that detects and mitigates flood attacks. This paper provides a comprehensive survey which includes research relating frameworks which are utilized for detecting attack and later mitigation of flood DDoS attack in Software Defined Network (SDN) with the help of NFV.

2023-07-12
Maity, Ilora, Vu, Thang X., Chatzinotas, Symeon, Minardi, Mario.  2022.  D-ViNE: Dynamic Virtual Network Embedding in Non-Terrestrial Networks. 2022 IEEE Wireless Communications and Networking Conference (WCNC). :166—171.
In this paper, we address the virtual network embedding (VNE) problem in non-terrestrial networks (NTNs) enabling dynamic changes in the virtual network function (VNF) deployment to maximize the service acceptance rate and service revenue. NTNs such as satellite networks involve highly dynamic topology and limited resources in terms of rate and power. VNE in NTNs is a challenge because a static strategy under-performs when new service requests arrive or the network topology changes unexpectedly due to failures or other events. Existing solutions do not consider the power constraint of satellites and rate limitation of inter-satellite links (ISLs) which are essential parameters for dynamic adjustment of existing VNE strategy in NTNs. In this work, we propose a dynamic VNE algorithm that selects a suitable VNE strategy for new and existing services considering the time-varying network topology. The proposed scheme, D-ViNE, increases the service acceptance ratio by 8.51% compared to the benchmark scheme TS-MAPSCH.
2023-01-20
Boni, Mounika, Ch, Tharakeswari, Alamanda, Swathi, Arasada, Bhaskara Venkata Sai Gayath, Maria, Azees.  2022.  An Efficient and Secure Anonymous Authentication Scheme for V2G Networks. 2022 6th International Conference on Devices, Circuits and Systems (ICDCS). :432—436.

The vehicle-to-grid (V2G) network has a clear advantage in terms of economic benefits, and it has grabbed the interest of powergrid and electric vehicle (EV) consumers. Many V2G techniques, at present, for example, use bilinear pairing to execute the authentication scheme, which results in significant computational costs. Furthermore, in the existing V2G techniques, the system master key is issued independently by the third parties, it is vulnerable to leaking if the third party is compromised by an attacker. This paper presents an efficient and secure anonymous authentication scheme for V2G networks to overcome this issue we use a lightweight authentication system for electric vehicles and smart grids. In the proposed technique, the keys are generated by the trusted authority after the successful registration of EVs in the trusted authority and the dispatching center. The suggested scheme not only enhances the verification performance of V2G networks and also protects against inbuilt hackers.