Biblio

Found 792 results

Filters: First Letter Of Last Name is O  [Clear All Filters]
2020-03-16
White, Ruffin, Caiazza, Gianluca, Jiang, Chenxu, Ou, Xinyue, Yang, Zhiyue, Cortesi, Agostino, Christensen, Henrik.  2019.  Network Reconnaissance and Vulnerability Excavation of Secure DDS Systems. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :57–66.

Data Distribution Service (DDS) is a realtime peer-to-peer protocol that serves as a scalable middleware between distributed networked systems found in many Industrial IoT domains such as automotive, medical, energy, and defense. Since the initial ratification of the standard, specifications have introduced a Security Model and Service Plugin Interface (SPI) architecture, facilitating authenticated encryption and data centric access control while preserving interoperable data exchange. However, as Secure DDS v1.1, the default plugin specifications presently exchanges digitally signed capability lists of both participants in the clear during the crypto handshake for permission attestation; thus breaching confidentiality of the context of the connection. In this work, we present an attacker model that makes use of network reconnaissance afforded by this leaked context in conjunction with formal verification and model checking to arbitrarily reason about the underlying topology and reachability of information flow, enabling targeted attacks such as selective denial of service, adversarial partitioning of the data bus, or vulnerability excavation of vendor implementations.

2020-04-20
Khan, Muhammad Imran, Foley, Simon N., O'Sullivan, Barry.  2019.  PriDe: A Quantitative Measure of Privacy-Loss in Interactive Querying Settings. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.
This paper presents, PriDe, a model to measure the deviation of an analyst's (user) querying behaviour from normal querying behaviour. The deviation is measured in terms of privacy, that is to say, how much of the privacy loss has incurred due to this shift in querying behaviour. The shift is represented in terms of a score - a privacy-loss score, the higher the score the more the loss in privacy. Querying behaviour of analysts are modelled using n-grams of SQL query and subsequently, behavioural profiles are constructed. Profiles are then compared in terms of privacy resulting in a quantified score indicating the privacy loss.
2020-04-17
Burgess, Jonah, Carlin, Domhnall, O'Kane, Philip, Sezer, Sakir.  2019.  MANiC: Multi-step Assessment for Crypto-miners. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1—8.

Modern Browsers have become sophisticated applications, providing a portal to the web. Browsers host a complex mix of interpreters such as HTML and JavaScript, allowing not only useful functionality but also malicious activities, known as browser-hijacking. These attacks can be particularly difficult to detect, as they usually operate within the scope of normal browser behaviour. CryptoJacking is a form of browser-hijacking that has emerged as a result of the increased popularity and profitability of cryptocurrencies, and the introduction of new cryptocurrencies that promote CPU-based mining. This paper proposes MANiC (Multi-step AssessmeNt for Crypto-miners), a system to detect CryptoJacking websites. It uses regular expressions that are compiled in accordance with the API structure of different miner families. This allows the detection of crypto-mining scripts and the extraction of parameters that could be used to detect suspicious behaviour associated with CryptoJacking. When MANiC was used to analyse the Alexa top 1m websites, it detected 887 malicious URLs containing miners from 11 different families and demonstrated favourable results when compared to related CryptoJacking research. We demonstrate that MANiC can be used to provide insights into this new threat, to identify new potential features of interest and to establish a ground-truth dataset, assisting future research.

2020-01-21
Oruganti, Pradeep Sharma, Appel, Matt, Ahmed, Qadeer.  2019.  Hardware-in-Loop Based Automotive Embedded Systems Cybersecurity Evaluation Testbed. Proceedings of the ACM Workshop on Automotive Cybersecurity. :41–44.
This paper explains the work-in-progress on a vehicle safety and security evaluation platform. Since the testing of cyber-attacks on an actual may be costly or dangerous, the platform enables us to evaluate the threat and the risk associated with cyber-attacks in a safe virtual environment. The goal is to integrate vehicle and powertrain models, mobility and network simulators to actual hardware running the control algorithms using CAN communication. Hardware is selected so as to allows expandability and application of wireless modules which will act as additional attack surfaces. In the current paper, the framework and ideology behind is testbed is described and current progress is shown. A simple GPS spoofing attack on a virtual test vehicle is done and some initial results are discussed.
2020-04-10
Watanabe, Hidenobu, Kondo, Tohru, Ohigashi, Toshihiro.  2019.  Implementation of Platform Controller and Process Modules of the Edge Computing for IoT Platform. 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :407—410.
Edge computing requires a flexible choice of data-processing and rapidly computation performed at the edge of networks. We proposed an edge computing platform with container-based virtualization technology. In the platform, data-processing instances are modularized and deployed to edge nodes suitable for user requirements with keeping the data-processing flows within wide area network. This paper reports the platform controller and the process modules implemented to realize the secure and flexible edge computing platform.
2020-12-01
Ogawa, R., Park, S., Umemuro, H..  2019.  How Humans Develop Trust in Communication Robots: A Phased Model Based on Interpersonal Trust. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :606—607.

The purpose of this study was to propose a model of development of trust in social robots. Insights in interpersonal trust were adopted from social psychology and a novel model was proposed. In addition, this study aimed to investigate the relationship among trust development and self-esteem. To validate the proposed model, an experiment using a communication robot NAO was conducted and changes in categories of trust as well as self-esteem were measured. Results showed that general and category trust have been developed in the early phase. Self-esteem is also increased along the interactions with the robot.

Xie, Y., Bodala, I. P., Ong, D. C., Hsu, D., Soh, H..  2019.  Robot Capability and Intention in Trust-Based Decisions Across Tasks. 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :39—47.

In this paper, we present results from a human-subject study designed to explore two facets of human mental models of robots - inferred capability and intention - and their relationship to overall trust and eventual decisions. In particular, we examine delegation situations characterized by uncertainty, and explore how inferred capability and intention are applied across different tasks. We develop an online survey where human participants decide whether to delegate control to a simulated UAV agent. Our study shows that human estimations of robot capability and intent correlate strongly with overall self-reported trust. However, overall trust is not independently sufficient to determine whether a human will decide to trust (delegate) a given task to a robot. Instead, our study reveals that estimations of robot intention, capability, and overall trust are integrated when deciding to delegate. From a broader perspective, these results suggest that calibrating overall trust alone is insufficient; to make correct decisions, humans need (and use) multi-faceted mental models when collaborating with robots across multiple contexts.

2020-04-17
Stark, Emily, Sleevi, Ryan, Muminovic, Rijad, O'Brien, Devon, Messeri, Eran, Felt, Adrienne Porter, McMillion, Brendan, Tabriz, Parisa.  2019.  Does Certificate Transparency Break the Web? Measuring Adoption and Error Rate 2019 IEEE Symposium on Security and Privacy (SP). :211—226.
Certificate Transparency (CT) is an emerging system for enabling the rapid discovery of malicious or misissued certificates. Initially standardized in 2013, CT is now finally beginning to see widespread support. Although CT provides desirable security benefits, web browsers cannot begin requiring all websites to support CT at once, due to the risk of breaking large numbers of websites. We discuss challenges for deployment, analyze the adoption of CT on the web, and measure the error rates experienced by users of the Google Chrome web browser. We find that CT has so far been widely adopted with minimal breakage and warnings. Security researchers often struggle with the tradeoff between security and user frustration: rolling out new security requirements often causes breakage. We view CT as a case study for deploying ecosystem-wide change while trying to minimize end user impact. We discuss the design properties of CT that made its success possible, as well as draw lessons from its risks and pitfalls that could be avoided in future large-scale security deployments.
2020-05-22
Song, Fuyuan, Qin, Zheng, Liu, Qin, Liang, Jinwen, Ou, Lu.  2019.  Efficient and Secure k-Nearest Neighbor Search Over Encrypted Data in Public Cloud. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1—6.
Cloud computing has become an important and popular infrastructure for data storage and sharing. Typically, data owners outsource their massive data to a public cloud that will provide search services to authorized data users. With privacy concerns, the valuable outsourced data cannot be exposed directly, and should be encrypted before outsourcing to the public cloud. In this paper, we focus on k-Nearest Neighbor (k-NN) search over encrypted data. We propose efficient and secure k-NN search schemes based on matrix similarity to achieve efficient and secure query services in public cloud. In our basic scheme, we construct the traces of two diagonal multiplication matrices to denote the Euclidean distance of two data points, and perform secure k-NN search by comparing traces of corresponding similar matrices. In our enhanced scheme, we strengthen the security property by decomposing matrices based on our basic scheme. Security analysis shows that our schemes protect the data privacy and query privacy under attacking with different levels of background knowledge. Experimental evaluations show that both schemes are efficient in terms of computation complexity as well as computational cost.
2020-01-21
Liu, Yi, Dong, Mianxiong, Ota, Kaoru, Wu, Jun, Li, Jianhua, Chen, Hao.  2019.  SCTD: Smart Reasoning Based Content Threat Defense in Semantics Knowledge Enhanced ICN. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Information-centric networking (ICN) is a novel networking architecture with subscription-based naming mechanism and efficient caching, which has abundant semantic features. However, existing defense studies in ICN fails to isolate or block efficiently novel content threats including malicious penetration and semantic obfuscation for the lack of researches considering ICN semantic features. More importantly, to detect potential threats, existing security works in ICN fail to use semantic reasoning to construct security knowledge-based defense mechanism. Thus ICN needs a smart and content-based defense mechanism. Current works are not able to block content threats implicated in semantics. Additionally, based on traditional computing resources, they are incompatible with ICN protocols. In this paper, we propose smart reasoning based content threat defense for semantics knowledge enhanced ICN. A fog computing based defense mechanism with content semantic awareness is designed to build ICN edge defense system. In addition, smart reasoning algorithms is proposed to detect implicit knowledge and semantic relations in packet names and contents with context communication content and knowledge graph. On top of inference knowledge, the mechanism can perceive threats from ICN interests. Simulations demonstrate the validity and efficiency of the proposed mechanism.
2020-01-20
Ohata, Keita, Adachi, Masakazu, Kusaka, Keisuke, Itoh, Jun-Ichi.  2019.  Three-phase AC-DC Converter for EV Rapid Charging with Wireless Communication for Decentralized Controller. 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia). :3033–3039.

This paper proposes a multi-modular AC-DC converter system using wireless communication for a rapid charger of electric vehicles (EVs). The multi-modular topology, which consists of multiple modules, has an advantage on the expandability regarding voltage and power. In the proposed system, the input current and output voltage are controlled by each decentralized controller, which wirelessly communicates to the main controller, on each module. Thus, high-speed communication between the main and modules is not required. As the results in a reduced number of signal lines. The fundamental effectiveness of the proposed system is verified with a 3-kW prototype. In the experimented results, the input current imbalance rate is reduced from 49.4% to 0.1%, where total harmonic distortion is less than 3%.

2019-09-24
Mohammad Sujan Miah, Marcus Gutierrez, Oscar Veliz, Omkar Thakoor, Christopher Kiekintveld.  2019.  Concealing Cyber-Decoys using Two-Sided Feature Deception Games. 10th International Workshop on Optimization in Multi-agent Systems 2019.

An increasingly important tool for securing computer net- works is the use of deceptive decoy objects (e.g., fake hosts, accounts, or files) to detect, confuse, and distract attackers. One of the well-known challenges in using decoys is that it can be difficult to design effective decoys that are hard to distinguish from real objects, especially against sophisticated attackers who may be aware of the use of decoys. A key issue is that both real and decoy objects may have observable features that may give the attacker the ability to distinguish one from the other. However, a defender deploying decoys may be able to modify some features of either the real or decoy objects (at some cost) making the decoys more effective. We present a game-theoretic model of two-sided deception that models this scenario. We present an empirical analysis of this model to show strategies for effectively concealing decoys, as well as some limitations of decoys for cyber security. 

2020-10-12
Okutan, Ahmet, Cheng, Fu-Yuan, Su, Shao-Hsuan, Yang, Shanchieh Jay.  2019.  Dynamic Generation of Empirical Cyberattack Models with Engineered Alert Features. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
Due to the increased diversity and complexity of cyberattacks, innovative and effective analytics are needed in order to identify critical cyber incidents on a corporate network even if no ground truth data is available. This paper develops an automated system which processes a set of intrusion alerts to create behavior aggregates and then classifies these aggregates into empirical attack models through a dynamic Bayesian approach with innovative feature engineering methods. Each attack model represents a unique collective attack behavior that helps to identify critical activities on the network. Using 2017 National Collegiate Penetration Testing Competition data, it is demonstrated that the developed system is capable of generating and refining unique attack models that make sense to human, without a priori knowledge.
2020-10-14
Ou, Yifan, Deng, Bin, Liu, Xuan, Zhou, Ke.  2019.  Local Outlier Factor Based False Data Detection in Power Systems. 2019 IEEE Sustainable Power and Energy Conference (iSPEC). :2003—2007.
The rapid developments of smart grids provide multiple benefits to the delivery of electric power, but at the same time makes the power grids under the threat of cyber attackers. The transmitted data could be deliberately modified without triggering the alarm of bad data detection procedure. In order to ensure the stable operation of the power systems, it is extremely significant to develop effective abnormal detection algorithms against injected false data. In this paper, we introduce the density-based LOF algorithm to detect the false data and dummy data. The simulation results show that the traditional density-clustering based LOF algorithm can effectively identify FDA, but the detection performance on DDA is not satisfactory. Therefore, we propose the improved LOF algorithm to detect DDA by setting reasonable density threshold.
2020-03-27
Tamura, Keiichi, Omagari, Akitada, Hashida, Shuichi.  2019.  Novel Defense Method against Audio Adversarial Example for Speech-to-Text Transcription Neural Networks. 2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA). :115–120.
With the developments in deep learning, the security of neural networks against vulnerabilities has become one of the most urgent research topics in deep learning. There are many types of security countermeasures. Adversarial examples and their defense methods, in particular, have been well-studied in recent years. An adversarial example is designed to make neural networks misclassify or produce inaccurate output. Audio adversarial examples are a type of adversarial example where the main target of attack is a speech-to-text transcription neural network. In this study, we propose a new defense method against audio adversarial examples for the speech-to-text transcription neural networks. It is difficult to determine whether an input waveform data representing the sound of voice is an audio adversarial example. Therefore, the main framework of the proposed defense method is based on a sandbox approach. To evaluate the proposed defense method, we used actual audio adversarial examples that were created on Deep Speech, which is a speech-to-text transcription neural network. We confirmed that our defense method can identify audio adversarial examples to protect speech-to-text systems.
2020-07-03
Yamauchi, Hiroaki, Nakao, Akihiro, Oguchi, Masato, Yamamoto, Shu, Yamaguchi, Saneyasu.  2019.  A Study on Service Identification Based on Server Name Indication Analysis. 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW). :470—474.

Identifying services constituting traffic from given IP network flows is essential to various applications, such as the management of quality of service (QoS) and the prevention of security issues. Typical methods for achieving this objective include identifications based on IP addresses and port numbers. However, such methods are not sufficiently accurate and require improvement. Deep Packet Inspection (DPI) is one of the most promising methods for improving the accuracy of identification. In addition, many current IP flows are encrypted using Transport Layer Security (TLS). Hence, it is necessary for identification methods to analyze flows encrypted by TLS. For that reason, a service identification method based on DPI and n-gram that focuses only on the non-encrypted parts in the TLS session establishment was proposed. However, there is room for improvement in identification accuracy because this method analyzes all the non-encrypted parts including Random Values without protocol analyses. In this paper, we propose a method for identifying the service from given IP flows based on analysis of Server Name Indication (SNI). The proposed method clusters flow according to the value of SNI and identify services from the occurrences of all clusters. Our evaluations, which involve identifications of services on Google and Yahoo sites, demonstrate that the proposed method can identify services more accurately than the existing method.

2020-12-02
Sun, Z., Du, P., Nakao, A., Zhong, L., Onishi, R..  2019.  Building Dynamic Mapping with CUPS for Next Generation Automotive Edge Computing. 2019 IEEE 8th International Conference on Cloud Networking (CloudNet). :1—6.

With the development of IoT and 5G networks, the demand for the next-generation intelligent transportation system has been growing at a rapid pace. Dynamic mapping has been considered one of the key technologies to reduce traffic accidents and congestion in the intelligent transportation system. However, as the number of vehicles keeps growing, a huge volume of mapping traffic may overload the central cloud, leading to serious performance degradation. In this paper, we propose and prototype a CUPS (control and user plane separation)-based edge computing architecture for the dynamic mapping and quantify its benefits by prototyping. There are a couple of merits of our proposal: (i) we can mitigate the overhead of the networks and central cloud because we only need to abstract and send global dynamic mapping information from the edge servers to the central cloud; (ii) we can reduce the response latency since the dynamic mapping traffic can be isolated from other data traffic by being generated and distributed from a local edge server that is deployed closer to the vehicles than the central server in cloud. The capabilities of our system have been quantified. The experimental results have shown our system achieves throughput improvement by more than four times, and response latency reduction by 67.8% compared to the conventional central cloud-based approach. Although these results are still obtained from the preliminary evaluations using our prototype system, we believe that our proposed architecture gives insight into how we utilize CUPS and edge computing to enable efficient dynamic mapping applications.

2020-02-10
Shahariar, G. M., Biswas, Swapnil, Omar, Faiza, Shah, Faisal Muhammad, Binte Hassan, Samiha.  2019.  Spam Review Detection Using Deep Learning. 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0027–0033.

A robust and reliable system of detecting spam reviews is a crying need in todays world in order to purchase products without being cheated from online sites. In many online sites, there are options for posting reviews, and thus creating scopes for fake paid reviews or untruthful reviews. These concocted reviews can mislead the general public and put them in a perplexity whether to believe the review or not. Prominent machine learning techniques have been introduced to solve the problem of spam review detection. The majority of current research has concentrated on supervised learning methods, which require labeled data - an inadequacy when it comes to online review. Our focus in this article is to detect any deceptive text reviews. In order to achieve that we have worked with both labeled and unlabeled data and proposed deep learning methods for spam review detection which includes Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN) and a variant of Recurrent Neural Network (RNN) that is Long Short-Term Memory (LSTM). We have also applied some traditional machine learning classifiers such as Nave Bayes (NB), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) to detect spam reviews and finally, we have shown the performance comparison for both traditional and deep learning classifiers.

2020-03-02
Gulsezim, Duisen, Zhansaya, Seiitkaliyeva, Razaque, Abdul, Ramina, Yestayeva, Amsaad, Fathi, Almiani, Muder, Ganda, Raouf, Oun, Ahmed.  2019.  Two Factor Authentication using Twofish Encryption and Visual Cryptography Algorithms for Secure Data Communication. 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :405–411.
Dependence of the individuals on the Internet for performing the several actions require secure data communication. Thus, the reliable data communication improves the confidentiality. As, enhanced security leads to reliable and faster communication. To improve the reliability and confidentiality, there is dire need of fully secured authentication method. There are several methods of password protections were introduced to protect the confidentiality and reliability. Most of the existing methods are based on alphanumeric approaches, but few methods provide the dual authentication process. In this paper, we introduce improved graphical password authentication using Twofish Encryption and Visual Cryptography (TEVC) method. Our proposed TEVC is unpredictably organized as predicting the correct graphical password and arranging its particles in the proper order is harder as compared to traditional alphanumeric password system. TEVC is tested by using JAVA platform. Based on the testing results, we confirm that proposed TEVC provides secure authentication. TEVC encryption algorithm detected as more prudent and possessing lower time complexity as compared to other known existing algorithms message code confirmation and fingerprint scan with password.
2020-03-18
Offenberger, Spencer, Herman, Geoffrey L., Peterson, Peter, Sherman, Alan T, Golaszewski, Enis, Scheponik, Travis, Oliva, Linda.  2019.  Initial Validation of the Cybersecurity Concept Inventory: Pilot Testing and Expert Review. 2019 IEEE Frontiers in Education Conference (FIE). :1–9.
We analyze expert review and student performance data to evaluate the validity of the Cybersecurity Concept Inventory (CCI) for assessing student knowledge of core cybersecurity concepts after a first course on the topic. A panel of 12 experts in cybersecurity reviewed the CCI, and 142 students from six different institutions took the CCI as a pilot test. The panel reviewed each item of the CCI and the overwhelming majority rated every item as measuring appropriate cybersecurity knowledge. We administered the CCI to students taking a first cybersecurity course either online or proctored by the course instructor. We applied classical test theory to evaluate the quality of the CCI. This evaluation showed that the CCI is sufficiently reliable for measuring student knowledge of cybersecurity and that the CCI may be too difficult as a whole. We describe the results of the expert review and the pilot test and provide recommendations for the continued improvement of the CCI.
2020-02-17
Maykot, Arthur S., Aranha Neto, Edison A. C., Oliva, Neimar A..  2019.  Automation of Manual Switches in Distribution Networks Focused on Self-Healing: A Step toward Smart Grids. 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America). :1–4.
This work describes the self-healing systems and their benefits in the power distribution networks, with the objective of indicating which manual switch should become, as a matter of priority, automatic. The computational tool used is based on graph theory, genetic algorithms and multicriteria evaluation. There are benefits for consumers, that will benefit from a more reliable and stable system, and for the utility, that can reduce costs with team field and financial compensations payed to consumers in case of continuity indexes violation. Data from a real distribution network from the state of Sao Paulo will be used as a case study for the application of the methodology.
2020-07-24
Obert, James, Chavez, Adrian.  2019.  Graph-Based Event Classification in Grid Security Gateways. 2019 Second International Conference on Artificial Intelligence for Industries (AI4I). :63—66.
In recent years the use of security gateways (SG) located within the electrical grid distribution network has become pervasive. SGs in substations and renewable distributed energy resource aggregators (DERAs) protect power distribution control devices from cyber and cyber-physical attacks. When encrypted communications within a DER network is used, TCP/IP packet inspection is restricted to packet header behavioral analysis which in most cases only allows the SG to perform anomaly detection of blocks of time-series data (event windows). Packet header anomaly detection calculates the probability of the presence of a threat within an event window, but fails in such cases where the unreadable encrypted payload contains the attack content. The SG system log (syslog) is a time-series record of behavioral patterns of network users and processes accessing and transferring data through the SG network interfaces. Threatening behavioral pattern in the syslog are measurable using both anomaly detection and graph theory. In this paper it will be shown that it is possible to efficiently detect the presence of and classify a potential threat within an SG syslog using light-weight anomaly detection and graph theory.
2020-01-21
Orellana, Cristian, Villegas, Mónica M., Astudillo, Hernán.  2019.  Mitigating Security Threats through the Use of Security Tactics to Design Secure Cyber-Physical Systems (CPS). Proceedings of the 13th European Conference on Software Architecture - Volume 2. :109–115.
Cyber-Physical Systems (CPS) attract growing interest from architects and attackers, given their potential effect on privacy and safety of ecosystems and users. Architectural tactics have been proposed as a design-time abstraction useful to guide and evaluate systems design decisions that address specific system qualities, but there is little published evidence of how Security Tactics help to mitigate security threats in the context of Cyber-Physical Systems. This article reports the principled derivation of architectural tactics for an actual SCADA-SAP bridge, where security was the key concern; the key inputs were (1) a well-known taxonomies of architectural tactics, and (2) a detailed record of trade-offs among these tactics. The project architects used client-specified quality attributes to identify relevant tactics in the taxonomy, and information on their trade-offs to guide top-level decisions on system global shape. We venture that all architectural tactics taxonomies should be enriched with explicit trade-offs, allowing architects to compare alternative solutions that seem equally good on principle but are not so in practice.
2020-07-16
McNeely-White, David G., Ortega, Francisco R., Beveridge, J. Ross, Draper, Bruce A., Bangar, Rahul, Patil, Dhruva, Pustejovsky, James, Krishnaswamy, Nikhil, Rim, Kyeongmin, Ruiz, Jaime et al..  2019.  User-Aware Shared Perception for Embodied Agents. 2019 IEEE International Conference on Humanized Computing and Communication (HCC). :46—51.

We present Diana, an embodied agent who is aware of her own virtual space and the physical space around her. Using video and depth sensors, Diana attends to the user's gestures, body language, gaze and (soon) facial expressions as well as their words. Diana also gestures and emotes in addition to speaking, and exists in a 3D virtual world that the user can see. This produces symmetric and shared perception, in the sense that Diana can see the user, the user can see Diana, and both can see the virtual world. The result is an embodied agent that begins to develop the conceit that the user is interacting with a peer rather than a program.

2020-08-28
McFadden, Danny, Lennon, Ruth, O’Raw, John.  2019.  AIS Transmission Data Quality: Identification of Attack Vectors. 2019 International Symposium ELMAR. :187—190.

Due to safety concerns and legislation implemented by various governments, the maritime sector adopted Automatic Identification System (AIS). Whilst governments and state agencies have an increasing reliance on AIS data, the underlying technology can be found to be fundamentally insecure. This study identifies and describes a number of potential attack vectors and suggests conceptual countermeasures to mitigate such attacks. With interception by Navy and Coast Guard as well as marine navigation and obstacle avoidance, the vulnerabilities within AIS call into question the multiple deployed overlapping AIS networks, and what the future holds for the protocol.