Biblio

Found 792 results

Filters: First Letter Of Last Name is O  [Clear All Filters]
2021-02-10
Varlioglu, S., Gonen, B., Ozer, M., Bastug, M..  2020.  Is Cryptojacking Dead After Coinhive Shutdown? 2020 3rd International Conference on Information and Computer Technologies (ICICT). :385—389.
Cryptojacking is the exploitation of victims' computer resources to mine for cryptocurrency using malicious scripts. It had become popular after 2017 when attackers started to exploit legal mining scripts, especially Coinhive scripts. Coinhive was actually a legal mining service that provided scripts and servers for in-browser mining activities. Nevertheless, over 10 million web users had been victims every month before the Coinhive shutdown that happened in Mar 2019. This paper explores the new era of the cryptojacking world after Coinhive discontinued its service. We aimed to see whether and how attackers continue cryptojacking, generate new malicious scripts, and developed new methods. We used a capable cryptojacking detector named CMTracker that proposed by Hong et al. in 2018. We automatically and manually examined 2770 websites that had been detected by CMTracker before the Coinhive shutdown. The results revealed that 99% of sites no longer continue cryptojacking. 1% of websites still run 8 unique mining scripts. By tracking these mining scripts, we detected 632 unique cryptojacking websites. Moreover, open-source investigations (OSINT) demonstrated that attackers still use the same methods. Therefore, we listed the typical patterns of cryptojacking. We concluded that cryptojacking is not dead after the Coinhive shutdown. It is still alive, but not as attractive as it used to be.
2020-12-28
Zondo, S., Ogudo, K., Umenne, P..  2020.  Design of a Smart Home System Using Bluetooth Protocol. 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD). :1—5.
Home automation is an intelligent, functional as a unit system that facilitates home processes without unnecessarily complicating the user's life. Devices can be connected, which in turn connect and talk through a centralized control unit, which are accessible via mobile phones. These devices include lights, appliances, security systems, alarms and many other sensors and devices. This paper presents the design and implementation of a Bluetooth based smart home automation system which uses a Peripheral interface controller (PIC) microcontroller (16F1937) as the main processer and the appliances are connected to the peripheral ports of the microcontroller via relays. The circuit in the project was designed in Diptrace software. The PCB layout design was completed. The fully functional smart home prototype was built and demonstrated to functional.
2021-02-10
Kascheev, S., Olenchikova, T..  2020.  The Detecting Cross-Site Scripting (XSS) Using Machine Learning Methods. 2020 Global Smart Industry Conference (GloSIC). :265—270.
This article discusses the problem of detecting cross-site scripting (XSS) using machine learning methods. XSS is an attack in which malicious code is embedded on a page to interact with an attacker’s web server. The XSS attack ranks third in the ranking of key web application risks according to Open Source Foundation for Application Security (OWASP). This attack has not been studied for a long time. It was considered harmless. However, this is fallacious: the page or HTTP Cookie may contain very vulnerable data, such as payment document numbers or the administrator session token. Machine learning is a tool that can be used to detect XSS attacks. This article describes an experiment. As a result the model for detecting XSS attacks was created. Following machine learning algorithms are considered: the support vector method, the decision tree, the Naive Bayes classifier, and Logistic Regression. The accuracy of the presented methods is made a comparison.
2021-09-21
Petrenko, Sergei A., Petrenko, Alexey S., Makoveichuk, Krystina A., Olifirov, Alexander V..  2020.  "Digital Bombs" Neutralization Method. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :446–451.
The article discusses new models and methods for timely identification and blocking of malicious code of critically important information infrastructure based on static and dynamic analysis of executable program codes. A two-stage method for detecting malicious code in the executable program codes (the so-called "digital bombs") is described. The first step of the method is to build the initial program model in the form of a control graph, the construction is carried out at the stage of static analysis of the program. The article discusses the purpose, features and construction criteria of an ordered control graph. The second step of the method is to embed control points in the program's executable code for organizing control of the possible behavior of the program using a specially designed recognition automaton - an automaton of dynamic control. Structural criteria for the completeness of the functional control of the subprogram are given. The practical implementation of the proposed models and methods was completed and presented in a special instrumental complex IRIDA.
2021-01-11
Awad, M. A., Ashkiani, S., Porumbescu, S. D., Owens, J. D..  2020.  Dynamic Graphs on the GPU. 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS). :739–748.
We present a fast dynamic graph data structure for the GPU. Our dynamic graph structure uses one hash table per vertex to store adjacency lists and achieves 3.4-14.8x faster insertion rates over the state of the art across a diverse set of large datasets, as well as deletion speedups up to 7.8x. The data structure supports queries and dynamic updates through both edge and vertex insertion and deletion. In addition, we define a comprehensive evaluation strategy based on operations, workloads, and applications that we believe better characterize and evaluate dynamic graph data structures.
2021-11-29
Gnatyuk, Sergiy, Okhrimenko, Tetiana, Azarenko, Olena, Fesenko, Andriy, Berdibayev, Rat.  2020.  Experimental Study of Secure PRNG for Q-trits Quantum Cryptography Protocols. 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT). :183–188.
Quantum cryptography doesn't depend on computational capabilities of intruders; it uses inviolability of quantum physics postulates (postulate of measurement, no-cloning theorem, uncertainty principle). Some quantum key distribution protocols have absolute (theoretical and informational) stability, but quantum secure direct communication (deterministic) protocols have only asymptotic stability. For a whole class of methods to ensure Q-trit deterministic quantum cryptography protocols stability, reliable trit generation method is required. In this paper, authors have developed a high-speed and secure pseudorandom number (PRN) generation method. This method includes the following steps: initialization of the internal state vector and direct PRN generation. Based on this method TriGen v.2.0 pseudo-random number generator (PRNG) was developed and studied in practice. Therefore, analysing the results of study it can be concluded following: 1) Proposed Q-trit PRNG is better then standard C ++ PRNG and can be used on practice for critical applications; 2) NIST STS technique cannot be used to evaluate the quality (statistical stability) of the Q-trit PRNG and formed trit sequences; 3) TritSTS 2020 technique is suitable for evaluating Q-trit PRNG and trit sequences quality. A future research study can be related to developing a fully-functional version of TritSTS technique and software tool.
2022-11-08
Wei, Yijie, Cao, Qiankai, Gu, Jie, Otseidu, Kofi, Hargrove, Levi.  2020.  A Fully-integrated Gesture and Gait Processing SoC for Rehabilitation with ADC-less Mixed-signal Feature Extraction and Deep Neural Network for Classification and Online Training. 2020 IEEE Custom Integrated Circuits Conference (CICC). :1–4.
An ultra-low-power gesture and gait classification SoC is presented for rehabilitation application featuring (1) mixed-signal feature extraction and integrated low-noise amplifier eliminating expensive ADC and digital feature extraction, (2) an integrated distributed deep neural network (DNN) ASIC supporting a scalable multi-chip neural network for sensor fusion with distortion resiliency for low-cost front end modules, (3) onchip learning of DNN engine allowing in-situ training of user specific operations. A 12-channel 65nm CMOS test chip was fabricated with 1μW power per channel, less than 3ms computation latency, on-chip training for user-specific DNN model and multi-chip networking capability.
2021-08-11
Brooks, Richard, Wang, Kuang-Ching, Oakley, Jon, Tusing, Nathan.  2020.  Global Internet Traffic Routing and Privacy. 2020 International Scientific and Technical Conference Modern Computer Network Technologies (MoNeTeC). :1—7.
Current Internet Protocol routing provides minimal privacy, which enables multiple exploits. The main issue is that the source and destination addresses of all packets appear in plain text. This enables numerous attacks, including surveillance, man-in-the-middle (MITM), and denial of service (DoS). The talk explains how these attacks work in the current network. Endpoints often believe that use of Network Address Translation (NAT), and Dynamic Host Configuration Protocol (DHCP) can minimize the loss of privacy.We will explain how the regularity of human behavior can be used to overcome these countermeasures. Once packets leave the local autonomous system (AS), they are routed through the network by the Border Gateway Protocol (BGP). The talk will discuss the unreliability of BGP and current attacks on the routing protocol. This will include an introduction to BGP injects and the PEERING testbed for BGP experimentation. One experiment we have performed uses statistical methods (CUSUM and F-test) to detect BGP injection events. We describe work we performed that applies BGP injects to Internet Protocol (IP) address randomization to replace fixed IP addresses in headers with randomized addresses. We explain the similarities and differences of this approach with virtual private networks (VPNs). Analysis of this work shows that BGP reliance on autonomous system (AS) numbers removes privacy from the concept, even though it would disable the current generation of MITM and DoS attacks. We end by presenting a compromise approach that creates software-defined data exchanges (SDX), which mix traffic randomization with VPN concepts. We contrast this approach with the Tor overlay network and provide some performance data.
2021-02-22
Oliver, J., Ali, M., Hagen, J..  2020.  HAC-T and Fast Search for Similarity in Security. 2020 International Conference on Omni-layer Intelligent Systems (COINS). :1–7.
Similarity digests have gained popularity for many security applications like blacklisting/whitelisting, and finding similar variants of malware. TLSH has been shown to be particularly good at hunting similar malware, and is resistant to evasion as compared to other similarity digests like ssdeep and sdhash. Searching and clustering are fundamental tools which help the security analysts and security operations center (SOC) operators in hunting and analyzing malware. Current approaches which aim to cluster malware are not scalable enough to keep up with the vast amount of malware and goodware available in the wild. In this paper, we present techniques which allow for fast search and clustering of TLSH hash digests which can aid analysts to inspect large amounts of malware/goodware. Our approach builds on fast nearest neighbor search techniques to build a tree-based index which performs fast search based on TLSH hash digests. The tree-based index is used in our threshold based Hierarchical Agglomerative Clustering (HAC-T) algorithm which is able to cluster digests in a scalable manner. Our clustering technique can cluster digests in O (n logn) time on average. We performed an empirical evaluation by comparing our approach with many standard and recent clustering techniques. We demonstrate that our approach is much more scalable and still is able to produce good cluster quality. We measured cluster quality using purity on 10 million samples obtained from VirusTotal. We obtained a high purity score in the range from 0.97 to 0.98 using labels from five major anti-virus vendors (Kaspersky, Microsoft, Symantec, Sophos, and McAfee) which demonstrates the effectiveness of the proposed method.
2021-03-29
Mar, Z., Oo, K. K..  2020.  An Improvement of Apriori Mining Algorithm using Linked List Based Hash Table. 2020 International Conference on Advanced Information Technologies (ICAIT). :165–169.
Today, the huge amount of data was using in organizations around the world. This huge amount of data needs to process so that we can acquire useful information. Consequently, a number of industry enterprises discovered great information from shopper purchases found in any respect times. In data mining, the most important algorithms for find frequent item sets from large database is Apriori algorithm and discover the knowledge using the association rule. Apriori algorithm was wasted times for scanning the whole database and searching the frequent item sets and inefficient of memory requirement when large numbers of transactions are in consideration. The improved Apriori algorithm is adding and calculating third threshold may increase the overhead. So, in the aims of proposed research, Improved Apriori algorithm with LinkedList and hash tabled is used to mine frequent item sets from the transaction large amount of database. This method includes database is scanning with Improved Apriori algorithm and frequent 1-item sets counts with using the hash table. Then, in the linked list saved the next frequent item sets and scanning the database. The hash table used to produce the frequent 2-item sets Therefore, the database scans the only two times and necessary less processing time and memory space.
2022-06-06
Yeruva, Vijaya Kumari, Chandrashekar, Mayanka, Lee, Yugyung, Rydberg-Cox, Jeff, Blanton, Virginia, Oyler, Nathan A.  2020.  Interpretation of Sentiment Analysis with Human-in-the-Loop. 2020 IEEE International Conference on Big Data (Big Data). :3099–3108.
Human-in-the-Loop has been receiving special attention from the data science and machine learning community. It is essential to realize the advantages of human feedback and the pressing need for manual annotation to improve machine learning performance. Recent advancements in natural language processing (NLP) and machine learning have created unique challenges and opportunities for digital humanities research. In particular, there are ample opportunities for NLP and machine learning researchers to analyze data from literary texts and use these complex source texts to broaden our understanding of human sentiment using the human-in-the-loop approach. This paper presents our understanding of how human annotators differ from machine annotators in sentiment analysis tasks and how these differences can contribute to designing systems for the "human in the loop" sentiment analysis in complex, unstructured texts. We further explore the challenges and benefits of the human-machine collaboration for sentiment analysis using a case study in Greek tragedy and address some open questions about collaborative annotation for sentiments in literary texts. We focus primarily on (i) an analysis of the challenges in sentiment analysis tasks for humans and machines, and (ii) whether consistent annotation results are generated from multiple human annotators and multiple machine annotators. For human annotators, we have used a survey-based approach with about 60 college students. We have selected six popular sentiment analysis tools for machine annotators, including VADER, CoreNLP's sentiment annotator, TextBlob, LIME, Glove+LSTM, and RoBERTa. We have conducted a qualitative and quantitative evaluation with the human-in-the-loop approach and confirmed our observations on sentiment tasks using the Greek tragedy case study.
2021-02-15
Omori, T., Isono, Y., Kondo, K., Akamine, Y., Kidera, S..  2020.  k-Space Decomposition Based Super-resolution Three-dimensional Imaging Method for Millimeter Wave Radar. 2020 IEEE Radar Conference (RadarConf20). :1–6.
Millimeter wave imaging radar is indispensible for collision avoidance of self-driving system, especially in optically blurred visions. The range points migration (RPM) is one of the most promising imaging algorithms, which provides a number of advantages from synthetic aperture radar (SAR), in terms of accuracy, computational complexity, and potential for multifunctional imaging. The inherent problem in the RPM is that it suffers from lower angular resolution in narrower frequency band even if higher frequency e.g. millimeter wave, signal is exploited. To address this problem, the k-space decomposition based RPM has been developed. This paper focuses on the experimental validation of this method using the X-band or millimeter wave radar system, and demonstrated that our method significantly enhances the reconstruction accuracy in three-dimensional images for the two simple spheres and realistic vehicle targets.
2020-12-14
Kyaw, A. T., Oo, M. Zin, Khin, C. S..  2020.  Machine-Learning Based DDOS Attack Classifier in Software Defined Network. 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :431–434.
Due to centralized control and programmable capability of the SDN architecture, network administrators can easily manage and control the whole network through the centralized controller. According to the SDN architecture, the SDN controller is vulnerable to distributed denial of service (DDOS) attacks. Thus, a failure of SDN controller is a major leak for security concern. The objectives of paper is therefore to detect the DDOS attacks and classify the normal or attack traffic in SDN network using machine learning algorithms. In this proposed system, polynomial SVM is applied to compare to existing linear SVM by using scapy, which is packet generation tool and RYU SDN controller. According to the experimental result, polynomial SVM achieves 3% better accuracy and 34% lower false alarm rate compared to Linear SVM.
2021-03-09
Omprakash, S. H., Suthar, M. K..  2020.  Mitigation Technique for Black hole Attack in Mobile Ad hoc Network. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.
Mobile Ad hoc Network is a very important key technology for device to device communication without any support of extra infrastructure. As it is being used as a mode of communication in various fields, protecting the network from various attacks becomes more important. In this research paper, we have created a real network scenario using random mobility of nodes and implemented Black hole Attack and Gray hole Attack, which degrades the performance of the network. In our research, we have found a novel mitigation technique which is efficient to mitigate both the attack from the network.
2021-11-29
Sapountzis, Nikolaos, Sun, Ruimin, Wei, Xuetao, Jin, Yier, Crandall, Jedidiah, Oliveira, Daniela.  2020.  MITOS: Optimal Decisioning for the Indirect Flow Propagation Dilemma in Dynamic Information Flow Tracking Systems. 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). :1090–1100.
Dynamic Information Flow Tracking (DIFT), also called Dynamic Taint Analysis (DTA), is a technique for tracking the information as it flows through a program's execution. Specifically, some inputs or data get tainted and then these taint marks (tags) propagate usually at the instruction-level. While DIFT has been a fundamental concept in computer and network security for the past decade, it still faces open challenges that impede its widespread application in practice; one of them being the indirect flow propagation dilemma: should the tags involved in an indirect flow, e.g., in a control or address dependency, be propagated? Propagating all these tags, as is done for direct flows, leads to overtainting (all taintable objects become tainted), while not propagating them leads to undertainting (information flow becomes incomplete). In this paper, we analytically model that decisioning problem for indirect flows, by considering various tradeoffs including undertainting versus overtainting, importance of heterogeneous code semantics and context. Towards tackling this problem, we design MITOS, a distributed-optimization algorithm, that: decides about the propagation of indirect flows by properly weighting all these tradeoffs, is of low-complexity, is scalable, is able to flexibly adapt to different application scenarios and security needs of large distributed systems. Additionally, MITOS is applicable to most DIFT systems that consider an arbitrary number of tag types, and introduces the key properties of fairness and tag-balancing to the DIFT field. To demonstrate MITOS's applicability in practice, we implement and evaluate MITOS on top of an open-source DIFT, and we shed light on the open problem. We also perform a case-study scenario with a real in-memory only attack and show that MITOS improves simultaneously (i) system's spatiotemporal overhead (up to 40%), and (ii) system's fingerprint on suspected bytes (up to 167%) compared to traditional DIFT, even though these metrics usually conflict.
2021-09-30
Kinai, Andrew, Otieno, Fred, Bore, Nelson, Weldemariam, Komminist.  2020.  Multi-Factor Authentication for Users of Non-Internet Based Applications of Blockchain-Based Platforms. 2020 IEEE International Conference on Blockchain (Blockchain). :525–531.
Attacks targeting several millions of non-internet based application users are on the rise. These applications such as SMS and USSD typically do not benefit from existing multi-factor authentication methods due to the nature of their interaction interfaces and mode of operations. To address this problem, we propose an approach that augments blockchain with multi-factor authentication based on evidence from blockchain transactions combined with risk analysis. A profile of how a user performs transactions is built overtime and is used to analyse the risk level of each new transaction. If a transaction is flagged as high risk, we generate n-factor layers of authentication using past endorsed blockchain transactions. A demonstration of how we used the proposed approach to authenticate critical financial transactions in a blockchain-based asset financing platform is also discussed.
2021-05-05
Osaretin, Charles Aimiuwu, Zamanlou, Mohammad, Iqbal, M. Tariq, Butt, Stephen.  2020.  Open Source IoT-Based SCADA System for Remote Oil Facilities Using Node-RED and Arduino Microcontrollers. 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0571—0575.
An open source and low-cost Supervisory Control and Data Acquisition System based on Node-RED and Arduino microcontrollers is presented in this paper. The system is designed for monitoring, supervision, and remotely controlling motors and sensors deployed for oil and gas facilities. The Internet of Things (IoT) based SCADA system consists of a host computer on which a server is deployed using the Node-RED programming tool and two terminal units connected to it: Arduino Uno and Arduino Mega. The Arduino Uno collects and communicates the data acquired from the temperature, flowrate, and water level sensors to the Node-Red on the computer through the serial port. It also uses a local liquid crystal display (LCD) to display the temperature. Node-RED on the computer retrieves the data from the voltage, current, rotary, accelerometer, and distance sensors through the Arduino Mega. Also, a web-based graphical user interface (GUI) is created using Node-RED and hosted on the local server for parsing the collected data. Finally, an HTTP basic access authentication is implemented using Nginx to control the clients' access from the Internet to the local server and to enhance its security and reliability.
2021-08-11
Njova, Dion, Ogudo, Kingsley, Umenne, Patrice.  2020.  Packet Analysis of DNP3 protocol over TCP/IP at an Electrical Substation Grid modelled in OPNET. 2020 IEEE PES/IAS PowerAfrica. :1—5.
In this paper Intelligent Electronic Devices (IED) that use ethernet for communicating with substation devices on the grid where modelled in OPNET. There is a need to test the communication protocol performance over the network. A model for the substation communication network was implemented in OPNET. This was done for ESKOM, which is the electrical power generation and distribution authority in South Africa. The substation communication model consists of 10 ethernet nodes which simulate protection Intelligent Electronic Devices (IEDs), 13 ethernet switches, a server which simulates the substation Remote Terminal Unit (RTU) and the DNP3 Protocol over TCP/IP simulated on the model. DNP3 is a protocol that can be used in a power utility computer network to provide communication service for the grid components. It was selected as the communication protocol because it is widely used in the energy sector in South Africa. The network load and packet delay parameters were sampled when 10%, 50%, 90% and 100% of devices are online. Analysis of the results showed that with an increase in number of nodes there was an increase in packet delay as well as the network load. The load on the network should be taken into consideration when designing a substation communication network that requires a quick response such as a smart gird.
2021-05-03
Takita, Yutaka, Miyabe, Masatake, Tomonaga, Hiroshi, Oguchi, Naoki.  2020.  Scalable Impact Range Detection against Newly Added Rules for Smart Network Verification. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1471–1476.
Technological progress in cloud networking, 5G networks, and the IoT (Internet of Things) are remarkable. In addition, demands for flexible construction of SoEs (Systems on Engagement) for various type of businesses are increasing. In such environments, dynamic changes of network rules, such as access control (AC) or packet forwarding, are required to ensure function and security in networks. On the other hand, it is becoming increasingly difficult to grasp the exact situation in such networks by utilizing current well-known network verification technologies since a huge number of network rules are complexly intertwined. To mitigate these issues, we have proposed a scalable network verification approach utilizing the concept of "Packet Equivalence Class (PEC)," which enable precise network function verification by strictly recognizing the impact range of each network rule. However, this approach is still not scalable for very large-scale networks which consist of tens of thousands of routers. In this paper, we enhanced our impact range detection algorithm for practical large-scale networks. Through evaluation in the network with more than 80,000 AC rules, we confirmed that our enhanced algorithm can achieve precise impact range detection in under 600 seconds.
2021-10-04
Sallal, Muntadher, Owenson, Gareth, Adda, Mo.  2020.  Security and Performance Evaluation of Master Node Protocol in the Bitcoin Peer-to-Peer Network. 2020 IEEE Symposium on Computers and Communications (ISCC). :1–6.
This paper proposes a proximity-aware extensions to the current Bitcoin protocol, named Master Node Based Clustering (MNBC). The ultimate purpose of the proposed protocol is to evaluate the security and performance of grouping nodes based on physical proximity. In MNBC protocol, physical internet connectivity increases as well as the number of hops between nodes decreases through assigning nodes to be responsible for propagating based on physical internet proximity.
2023-03-06
Le, Trung-Nghia, Akihiro, Sugimoto, Ono, Shintaro, Kawasaki, Hiroshi.  2020.  Toward Interactive Self-Annotation For Video Object Bounding Box: Recurrent Self-Learning And Hierarchical Annotation Based Framework. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). :3220–3229.
Amount and variety of training data drastically affect the performance of CNNs. Thus, annotation methods are becoming more and more critical to collect data efficiently. In this paper, we propose a simple yet efficient Interactive Self-Annotation framework to cut down both time and human labor cost for video object bounding box annotation. Our method is based on recurrent self-supervised learning and consists of two processes: automatic process and interactive process, where the automatic process aims to build a supported detector to speed up the interactive process. In the Automatic Recurrent Annotation, we let an off-the-shelf detector watch unlabeled videos repeatedly to reinforce itself automatically. At each iteration, we utilize the trained model from the previous iteration to generate better pseudo ground-truth bounding boxes than those at the previous iteration, recurrently improving self-supervised training the detector. In the Interactive Recurrent Annotation, we tackle the human-in-the-loop annotation scenario where the detector receives feedback from the human annotator. To this end, we propose a novel Hierarchical Correction module, where the annotated frame-distance binarizedly decreases at each time step, to utilize the strength of CNN for neighbor frames. Experimental results on various video datasets demonstrate the advantages of the proposed framework in generating high-quality annotations while reducing annotation time and human labor costs.
ISSN: 2642-9381
2021-05-18
Ogawa, Yuji, Kimura, Tomotaka, Cheng, Jun.  2020.  Vulnerability Assessment for Machine Learning Based Network Anomaly Detection System. 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). :1–2.
In this paper, we assess the vulnerability of network anomaly detection systems that use machine learning methods. Although the performance of these network anomaly detection systems is high in comparison to that of existing methods without machine learning methods, the use of machine learning methods for detecting vulnerabilities is a growing concern among researchers of image processing. If the vulnerabilities of machine learning used in the network anomaly detection method are exploited by attackers, large security threats are likely to emerge in the near future. Therefore, in this paper we clarify how vulnerability detection of machine learning network anomaly detection methods affects their performance.
2021-03-29
Ozdemir, M. A., Elagoz, B., Soy, A. Alaybeyoglu, Akan, A..  2020.  Deep Learning Based Facial Emotion Recognition System. 2020 Medical Technologies Congress (TIPTEKNO). :1—4.

In this study, it was aimed to recognize the emotional state from facial images using the deep learning method. In the study, which was approved by the ethics committee, a custom data set was created using videos taken from 20 male and 20 female participants while simulating 7 different facial expressions (happy, sad, surprised, angry, disgusted, scared, and neutral). Firstly, obtained videos were divided into image frames, and then face images were segmented using the Haar library from image frames. The size of the custom data set obtained after the image preprocessing is more than 25 thousand images. The proposed convolutional neural network (CNN) architecture which is mimics of LeNet architecture has been trained with this custom dataset. According to the proposed CNN architecture experiment results, the training loss was found as 0.0115, the training accuracy was found as 99.62%, the validation loss was 0.0109, and the validation accuracy was 99.71%.

Oğuz, K., Korkmaz, İ, Korkmaz, B., Akkaya, G., Alıcı, C., Kılıç, E..  2020.  Effect of Age and Gender on Facial Emotion Recognition. 2020 Innovations in Intelligent Systems and Applications Conference (ASYU). :1—6.

New research fields and applications on human computer interaction will emerge based on the recognition of emotions on faces. With such aim, our study evaluates the features extracted from faces to recognize emotions. To increase the success rate of these features, we have run several tests to demonstrate how age and gender affect the results. The artificial neural networks were trained by the apparent regions on the face such as eyes, eyebrows, nose, mouth, and jawline and then the networks are tested with different age and gender groups. According to the results, faces of older people have a lower performance rate of emotion recognition. Then, age and gender based groups are created manually, and we show that performance rates of facial emotion recognition have increased for the networks that are trained using these particular groups.

2021-09-16
Ali, Ikram, Lawrence, Tandoh, Omala, Anyembe Andrew, Li, Fagen.  2020.  An Efficient Hybrid Signcryption Scheme With Conditional Privacy-Preservation for Heterogeneous Vehicular Communication in VANETs. IEEE Transactions on Vehicular Technology. 69:11266–11280.
Vehicular ad hoc networks (VANETs) ensure improvement in road safety and traffic management by allowing the vehicles and infrastructure that are connected to them to exchange safety messages. Due to the open wireless communication channels, security and privacy issues are a major concern in VANETs. A typical attack consists of a malicious third party intercepting, modifying and retransmitting messages. Heterogeneous vehicular communication in VANETs occurs when vehicles (only) or vehicles and other infrastructure communicate using different cryptographic techniques. To address the security and privacy issues in heterogeneous vehicular communication, some heterogeneous signcryption schemes have been proposed. These schemes simultaneously satisfy the confidentiality, authentication, integrity and non-repudiation security requirements. They however fail to properly address the efficiency with respect to the computational cost involved in unsigncrypting ciphertexts, which is often affected by the speeds at which vehicles travel in VANETs. In this paper, we propose an efficient conditional privacy-preserving hybrid signcryption (CPP-HSC) scheme that uses bilinear pairing to satisfy the security requirements of heterogeneous vehicular communication in a single logical step. Our scheme ensures the transmission of a message from a vehicle with a background of an identity-based cryptosystem (IBC) to a receiver with a background of a public-key infrastructure (PKI). Furthermore, it supports a batch unsigncryption method, which allows the receiver to speed up the process by processing multiple messages simultaneously. The security of our CPP-HSC scheme ensures the indistinguishability against adaptive chosen ciphertext attack (IND-CCA2) under the intractability assumption of q-bilinear Diffie-Hellman inversion (q-BDHI) problem and the existential unforgeability against adaptive chosen message attack (EUF-CMA) under the intractability assumption of q-strong Diffie-Hellman (q-SDH) problem in the random oracle model (ROM). The performance analysis indicates that our scheme has an improvement over the existing related schemes with respect to the computational cost without an increase in the communication cost.