Biblio
Along with technological developments in the mobile environment, mobile devices are used in many areas like banking, social media and communication. The common characteristic of applications in these fields is that they contain personal or financial information of users. These types of applications are developed for Android or IOS operating systems and have become the target of attackers. To detect weakness, security analysts, perform mobile penetration tests using security analysis tools. These analysis tools have advantages and disadvantages to each other. Some tools can prioritize static or dynamic analysis, others not including these types of tests. Within the scope of the current model, we are aim to gather security analysis tools under the penetration testing framework, also contributing analysis results by data fusion algorithm. With the suggested model, security analysts will be able to use these types of analysis tools in addition to using the advantage of fusion algorithms fed by analysis tools outputs.
Supervisory control and data acquisition (SCADA) networks provide high situational awareness and automation control for industrial control systems, whilst introducing a wide range of access points for cyber attackers. To address these issues, a line of machine learning or deep learning based intrusion detection systems (IDSs) have been presented in the literature, where a large number of attack examples are usually demanded. However, in real-world SCADA networks, attack examples are not always sufficient, having only a few shots in many cases. In this paper, we propose a novel few-shot learning based IDS, named FS-IDS, to detect cyber attacks against SCADA networks, especially when having only a few attack examples in the defenders’ hands. Specifically, a new method by orchestrating one-hot encoding and principal component analysis is developed, to preprocess SCADA datasets containing sufficient examples for frequent cyber attacks. Then, a few-shot learning based preliminary IDS model is designed and trained using the preprocessed data. Last, a complete FS-IDS model for SCADA networks is established by further training the preliminary IDS model with a few examples for cyber attacks of interest. The high effectiveness of the proposed FS-IDS, in detecting cyber attacks against SCADA networks with only a few examples, is demonstrated by extensive experiments on a real SCADA dataset.