Biblio

Found 792 results

Filters: First Letter Of Last Name is O  [Clear All Filters]
2022-02-07
Or-Meir, Ori, Cohen, Aviad, Elovici, Yuval, Rokach, Lior, Nissim, Nir.  2021.  Pay Attention: Improving Classification of PE Malware Using Attention Mechanisms Based on System Call Analysis. 2021 International Joint Conference on Neural Networks (IJCNN). :1–8.
Malware poses a threat to computing systems worldwide, and security experts work tirelessly to detect and classify malware as accurately and quickly as possible. Since malware can use evasion techniques to bypass static analysis and security mechanisms, dynamic analysis methods are more useful for accurately analyzing the behavioral patterns of malware. Previous studies showed that malware behavior can be represented by sequences of executed system calls and that machine learning algorithms can leverage such sequences for the task of malware classification (a.k.a. malware categorization). Accurate malware classification is helpful for malware signature generation and is thus beneficial to antivirus vendors; this capability is also valuable to organizational security experts, enabling them to mitigate malware attacks and respond to security incidents. In this paper, we propose an improved methodology for malware classification, based on analyzing sequences of system calls invoked by malware in a dynamic analysis environment. We show that adding an attention mechanism to a LSTM model improves accuracy for the task of malware classification, thus outperforming the state-of-the-art algorithm by up to 6%. We also show that the transformer architecture can be used to analyze very long sequences with significantly lower time complexity for training and prediction. Our proposed method can serve as the basis for a decision support system for security experts, for the task of malware categorization.
2022-02-22
Olivier, Stephen L., Ellingwood, Nathan D., Berry, Jonathan, Dunlavy, Daniel M..  2021.  Performance Portability of an SpMV Kernel Across Scientific Computing and Data Science Applications. 2021 IEEE High Performance Extreme Computing Conference (HPEC). :1—8.
Both the data science and scientific computing communities are embracing GPU acceleration for their most demanding workloads. For scientific computing applications, the massive volume of code and diversity of hardware platforms at supercomputing centers has motivated a strong effort toward performance portability. This property of a program, denoting its ability to perform well on multiple architectures and varied datasets, is heavily dependent on the choice of parallel programming model and which features of the programming model are used. In this paper, we evaluate performance portability in the context of a data science workload in contrast to a scientific computing workload, evaluating the same sparse matrix kernel on both. Among our implementations of the kernel in different performance-portable programming models, we find that many struggle to consistently achieve performance improvements using the GPU compared to simple one-line OpenMP parallelization on high-end multicore CPUs. We show one that does, and its performance approaches and sometimes even matches that of vendor-provided GPU math libraries.
2022-07-28
ÖZGÜR, Berkecan, Dogru, Ibrahim Alper, Uçtu, Göksel, ALKAN, Mustafa.  2021.  A Suggested Model for Mobile Application Penetration Test Framework. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :18—21.

Along with technological developments in the mobile environment, mobile devices are used in many areas like banking, social media and communication. The common characteristic of applications in these fields is that they contain personal or financial information of users. These types of applications are developed for Android or IOS operating systems and have become the target of attackers. To detect weakness, security analysts, perform mobile penetration tests using security analysis tools. These analysis tools have advantages and disadvantages to each other. Some tools can prioritize static or dynamic analysis, others not including these types of tests. Within the scope of the current model, we are aim to gather security analysis tools under the penetration testing framework, also contributing analysis results by data fusion algorithm. With the suggested model, security analysts will be able to use these types of analysis tools in addition to using the advantage of fusion algorithms fed by analysis tools outputs.

2022-01-12
Weyns, Danny, Schmerl, Bradley, Kishida, Masako, Leva, Alberto, Litoiu, Marin, Ozay, Necmiye, Paterson, Colin, undefined.  2021.  Towards Better Adaptive Systems by Combining MAPE, Control Theory, and Machine Learning. Proceedings of the 16th Symposium on Software Engineering for Adaptive and Self-Managing Systems, Virtual.
Two established approaches to engineer adaptive systems are architecture-based adaptation that uses a Monitor-Analysis-Planning-Executing (MAPE) loop that reasons over architectural models (aka Knowledge) to make adaptation decisions, and control-based adaptation that relies on principles of control theory (CT) to realize adaptation. Recently, we also observe a rapidly growing interest in applying machine learning (ML) to support different adaptation mechanisms. While MAPE and CT have particular characteristics and strengths to be applied independently, in this paper, we are concerned with the question of how these approaches are related with one another and whether combining them and supporting them with ML can produce better adaptive systems. We motivate the combined use of different adaptation approaches using a scenario of a cloud-based enterprise system and illustrate the analysis when combining the different approaches. To conclude, we offer a set of open questions for further research in this interesting area.
Zhang, Changjian, Wagner, Ryan, Orvalho, Pedro, Garlan, David, Manquinho, Vasco, Martins, Ruben, Kang, Eunsuk.  2021.  AlloyMax: Bringing Maximum Satisfaction to Relational Specifications. The ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE) 2021.
Alloy is a declarative modeling language based on a first-order relational logic. Its constraint-based analysis has enabled a wide range of applications in software engineering, including configuration synthesis, bug finding, test-case generation, and security analysis. Certain types of analysis tasks in these domains involve finding an optimal solution. For example, in a network configuration problem, instead of finding any valid configuration, it may be desirable to find one that is most permissive (i.e., it permits a maximum number of packets). Due to its dependence on SAT, however, Alloy cannot be used to specify and analyze these types of problems. We propose AlloyMax, an extension of Alloy with a capability to express and analyze problems with optimal solutions. AlloyMax introduces (1) a small addition of language constructs that can be used to specify a wide range of problems that involve optimality and (2) a new analysis engine that leverages a Maximum Satisfiability (MaxSAT) solver to generate optimal solutions. To enable this new type of analysis, we show how a specification in a first-order relational logic can be translated into an input format of MaxSAT solvers—namely, a Boolean formula in weighted conjunctive normal form (WCNF). We demonstrate the applicability and scalability of AlloyMax on a benchmark of problems. To our knowledge, AlloyMax is the first approach to enable analysis with optimality in a relational modeling language, and we believe that AlloyMax has the potential to bring a wide range of new applications to Alloy.
2022-01-25
Onibonoje, Moses Oluwafemi.  2021.  IoT-Based Synergistic Approach for Poultry Management System. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1—5.
Poultry farming has contributed immensely to global food security and the economy. Its produces are favourites and hugely subscribed, due to the uniqueness of their nutrients to all categories of people and the alternatives they provide to other high-cholesterol proteins. The increase in the world's population will continuously stretch for an increase in demands for poultry products. A smart way to ensure continuous production and increased yields in various farms is to adopt automated and remote management of poultries. This paper modelled and developed a collaborative system using the synergistic wireless sensor network technology and the internet of things. The system integrated resourcefully selected wireless sensors, mobile phone, other autonomous devices and the internet to remotely monitor and control environmental parameters and activities within the farm. Parameters such as temperature, humidity, water level, food valve level, ammonia gas, illumination are sensed, benchmarked against selected thresholds, and communicated wirelessly to the sink node and the internet cloud. The required control actions can also be initiated remotely by the administrator through messages or command signal. Also, the various parameters and actions can be read or documented in real-time over the web. The system was tested and evaluated to give an average of about 93.7% accuracy in parameters detection and 2s delay in real-time response. Therefore, a modelled system has been developed to provide robust and more intuitive solutions in poultry farming.
2021-12-21
Fajari, Muhammad Fadhillah, Ogi, Dion.  2021.  Implementation of Efficient Anonymous Certificate-Based Multi-Message and Multi-Receiver Signcryption On Raspberry Pi-Based Internet of Things Monitoring System. 2021 International Conference on ICT for Smart Society (ICISS). :1–5.
Internet of things as a technology that connect internet and physical world has been implemented in many diverse fields and has been proven very useful and flexible. In every implementation of technology that involve internet, security must be a great concern, including the implementation of IoT technology. A lot of alternatives can be used to achieve security of IoT. Ming et al. has proposed novel signcryption scheme to secure IoT of monitoring health data. In this work, proposed signcryption scheme from Ming et al. has been successfully implemented using Raspberry Pi and ESP32 and has proven work in securing IoT data.
2022-06-09
Chin, Kota, Omote, Kazumasa.  2021.  Analysis of Attack Activities for Honeypots Installation in Ethereum Network. 2021 IEEE International Conference on Blockchain (Blockchain). :440–447.
In recent years, blockchain-based cryptocurren-cies have attracted much attention. Attacks targeting cryptocurrencies and related services directly profit an attacker if successful. Related studies have reported attacks targeting configuration-vulnerable nodes in Ethereum using a method called honeypots to observe malicious user attacks. They have analyzed 380 million observed requests and showed that attacks had to that point taken at least 4193 Ether. However, long-term observations using honeypots are difficult because the cost of maintaining honeypots is high. In this study, we analyze the behavior of malicious users using our honeypot system. More precisely, we clarify the pre-investigation that a malicious user performs before attacks. We show that the cost of maintaining a honeypot can be reduced. For example, honeypots need to belong in Ethereum's P2P network but not to the mainnet. Further, if they belong to the testnet, the cost of storage space can be reduced.
Olowononi, Felix O., Anwar, Ahmed H., Rawat, Danda B., Acosta, Jaime C., Kamhoua, Charles A..  2021.  Deep Learning for Cyber Deception in Wireless Networks. 2021 17th International Conference on Mobility, Sensing and Networking (MSN). :551–558.
Wireless communications networks are an integral part of intelligent systems that enhance the automation of various activities and operations embarked by humans. For example, the development of intelligent devices imbued with sensors leverages emerging technologies such as machine learning (ML) and artificial intelligence (AI), which have proven to enhance military operations through communication, control, intelligence gathering, and situational awareness. However, growing concerns in cybersecurity imply that attackers are always seeking to take advantage of the widened attack surface to launch adversarial attacks which compromise the activities of legitimate users. To address this challenge, we leverage on deep learning (DL) and the principle of cyber-deception to propose a method for defending wireless networks from the activities of jammers. Specifically, we use DL to regulate the power allocated to users and the channel they use to communicate, thereby luring jammers into attacking designated channels that are considered to guarantee maximum damage when attacked. Furthermore, by directing its energy towards the attack on a specific channel, other channels are freed up for actual transmission, ensuring secure communication. Through simulations and experiments carried out, we conclude that this approach enhances security in wireless communication systems.
2022-08-12
Oshnoei, Soroush, Aghamohammadi, Mohammadreza.  2021.  Detection and Mitigation of Coordinate False DataInjection Attacks in Frequency Control of Power Grids. 2021 11th Smart Grid Conference (SGC). :1—5.
In modern power grids (PGs), load frequency control (LFC) is effectively employed to preserve the frequency within the allowable ranges. However, LFC dependence on information and communication technologies (ICTs) makes PGs vulnerable to cyber attacks. Manipulation of measured data and control commands known as false data injection attacks (FDIAs) can negatively affect grid frequency performance and destabilize PG. This paper investigates the frequency performance of an isolated PG under coordinated FDIAs. A control scheme based on the combination of a Kalman filter, a chi-square detector, and a linear quadratic Gaussian controller is proposed to detect and mitigate the coordinated FDIAs. The efficiency of the proposed control scheme is evaluated under two types of scaling and exogenous FDIAs. The simulation results demonstrate that the proposed control scheme has significant capabilities to detect and mitigate the designed FDIAs.
2022-05-12
Şengül, Özkan, Özkılıçaslan, Hasan, Arda, Emrecan, Yavanoğlu, Uraz, Dogru, Ibrahim Alper, Selçuk, Ali Aydın.  2021.  Implementing a Method for Docker Image Security. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :34–39.
Containers that can be easily created, transported and scaled with the use of container-based virtualization technologies work better than classical virtualization technologies and provide efficient resource usage. The Docker platform is one of the most widely used solutions among container-based virtualization technologies. The OS-level virtualization of the Docker platform and the container’s use of the host operating system kernel may cause security problems. In this study, a method including static and dynamic analysis has been proposed to ensure Docker image and container security. In the static analysis phase of the method, the packages of the images are scanned for vulnerabilities and malware. In the dynamic analysis phase, Docker containers are run for a certain period of time, after the open port scanning, network traffic is analyzed with the Snort3. Seven Docker images are analyzed and the results are shared.
2022-07-29
Ganesh, Sundarakrishnan, Ohlsson, Tobias, Palma, Francis.  2021.  Predicting Security Vulnerabilities using Source Code Metrics. 2021 Swedish Workshop on Data Science (SweDS). :1–7.
Large open-source systems generate and operate on a plethora of sensitive enterprise data. Thus, security threats or vulnerabilities must not be present in open-source systems and must be resolved as early as possible in the development phases to avoid catastrophic consequences. One way to recognize security vulnerabilities is to predict them while developers write code to minimize costs and resources. This study examines the effectiveness of machine learning algorithms to predict potential security vulnerabilities by analyzing the source code of a system. We obtained the security vulnerabilities dataset from Apache Tomcat security reports for version 4.x to 10.x. We also collected the source code of Apache Tomcat 4.x to 10.x to compute 43 object-oriented metrics. We assessed four traditional supervised learning algorithms, i.e., Naive Bayes (NB), Decision Tree (DT), K-Nearest Neighbors (KNN), and Logistic Regression (LR), to understand their efficacy in predicting security vulnerabilities. We obtained the highest accuracy of 80.6% using the KNN. Thus, the KNN classifier was demonstrated to be the most effective of all the models we built. The DT classifier also performed well but under-performed when it came to multi-class classification.
2022-10-20
Thorpe, Adam J., Oishi, Meeko M. K..  2021.  Stochastic Optimal Control via Hilbert Space Embeddings of Distributions. 2021 60th IEEE Conference on Decision and Control (CDC). :904—911.
Kernel embeddings of distributions have recently gained significant attention in the machine learning community as a data-driven technique for representing probability distributions. Broadly, these techniques enable efficient computation of expectations by representing integral operators as elements in a reproducing kernel Hilbert space. We apply these techniques to the area of stochastic optimal control theory and present a method to compute approximately optimal policies for stochastic systems with arbitrary disturbances. Our approach reduces the optimization problem to a linear program, which can easily be solved via the Lagrangian dual, without resorting to gradient-based optimization algorithms. We focus on discrete- time dynamic programming, and demonstrate our proposed approach on a linear regulation problem, and on a nonlinear target tracking problem. This approach is broadly applicable to a wide variety of optimal control problems, and provides a means of working with stochastic systems in a data-driven setting.
2022-06-30
Arai, Tsuyoshi, Okabe, Yasuo, Matsumoto, Yoshinori.  2021.  Precursory Analysis of Attack-Log Time Series by Machine Learning for Detecting Bots in CAPTCHA. 2021 International Conference on Information Networking (ICOIN). :295—300.
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is commonly utilized as a technology for avoiding attacks to Web sites by bots. State-of-the-art CAPTCHAs vary in difficulty based on the client's behavior, allowing for efficient bot detection without sacrificing simplicity. In this research, we focus on detecting bots by supervised machine learning from access-log time series in the past. We have analysed access logs to several Web services which are using a commercial cloud-based CAPTCHA service, Capy Puzzle CAPTCHA. Experiments show that bot detection in attacks over a month can be performed with high accuracy by precursory analysis of the access log in only the first day as training data. In addition, we have manually analyzed the data that are found to be False Positive in the discrimination results, and it is found that the proposed model actually detects access by bots, which had been overlooked in the first-stage manual discrimination of flags in preparation of training data.
2022-07-05
Obata, Sho, Kobayashi, Koichi, Yamashita, Yuh.  2021.  Sensor Scheduling-Based Detection of False Data Injection Attacks in Power System State Estimation. 2021 IEEE International Conference on Consumer Electronics (ICCE). :1—4.
In state estimation of steady-state power networks, a cyber attack that cannot be detected from the residual (i.e., the estimation error) is called a false data injection attack. In this paper, to enforce security of power networks, we propose a method of detecting a false data injection attack. In the proposed method, a false data injection attack is detected by randomly choosing sensors used in state estimation. The effectiveness of the proposed method is presented by two numerical examples including the IEEE 14-bus system.
2021-12-22
Ortega, Alfonso, Fierrez, Julian, Morales, Aythami, Wang, Zilong, Ribeiro, Tony.  2021.  Symbolic AI for XAI: Evaluating LFIT Inductive Programming for Fair and Explainable Automatic Recruitment. 2021 IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW). :78–87.
Machine learning methods are growing in relevance for biometrics and personal information processing in domains such as forensics, e-health, recruitment, and e-learning. In these domains, white-box (human-readable) explanations of systems built on machine learning methods can become crucial. Inductive Logic Programming (ILP) is a subfield of symbolic AI aimed to automatically learn declarative theories about the process of data. Learning from Interpretation Transition (LFIT) is an ILP technique that can learn a propositional logic theory equivalent to a given blackbox system (under certain conditions). The present work takes a first step to a general methodology to incorporate accurate declarative explanations to classic machine learning by checking the viability of LFIT in a specific AI application scenario: fair recruitment based on an automatic tool generated with machine learning methods for ranking Curricula Vitae that incorporates soft biometric information (gender and ethnicity). We show the expressiveness of LFIT for this specific problem and propose a scheme that can be applicable to other domains.
Poli, Jean-Philippe, Ouerdane, Wassila, Pierrard, Régis.  2021.  Generation of Textual Explanations in XAI: The Case of Semantic Annotation. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.
Semantic image annotation is a field of paramount importance in which deep learning excels. However, some application domains, like security or medicine, may need an explanation of this annotation. Explainable Artificial Intelligence is an answer to this need. In this work, an explanation is a sentence in natural language that is dedicated to human users to provide them clues about the process that leads to the decision: the labels assignment to image parts. We focus on semantic image annotation with fuzzy logic that has proven to be a useful framework that captures both image segmentation imprecision and the vagueness of human spatial knowledge and vocabulary. In this paper, we present an algorithm for textual explanation generation of the semantic annotation of image regions.
2021-12-21
Hamouid, Khaled, Omar, Mawloud, Adi, Kamel.  2021.  A Privacy-Preserving Authentication Model Based on Anonymous Certificates in IoT. 2021 Wireless Days (WD). :1–6.
This paper proposes an anonymity based mechanism for providing privacy in IoT environment. Proposed scheme allows IoT entities to anonymously interacting and authenticating with each other, or even proving that they have trustworthy relationship without disclosing their identities. Authentication is based on an anonymous certificates mechanism where interacting IoT entities could unlinkably prove possession of a valid certificate without revealing any incorporated identity-related information, thereby preserving their privacy and thwarting tracking and profiling attacks. Through a security analysis, we demonstrate the reliability of our solution.
2021-12-20
Umar, Sani, Felemban, Muhamad, Osais, Yahya.  2021.  Advanced Persistent False Data Injection Attacks Against Optimal Power Flow in Power Systems. 2021 International Wireless Communications and Mobile Computing (IWCMC). :469–474.
Recently, cyber security in power systems has captured significant interest. This is because the world has seen a surge in cyber attacks on power systems. One of the prolific cyber attacks in modern power systems are False Data Injection Attacks (FDIA). In this paper, we analyzed the impact of FDIA on the operation cost of power systems. Also, we introduced a novel Advanced Persistent Threat (APT) based attack strategy that maximizes the operating costs when attacking specific nodes in the system. We model the attack strategy using an optimization problem and use metaheuristics algorithms to solve the optimization problem and execute the attack. We have found that our attacks can increase the power generation cost by up to 15.6%, 60.12%, and 74.02% on the IEEE 6-Bus systems, 30-Bus systems, and 118-Bus systems, respectively, as compared to normal operation.
2022-08-03
Nakano, Yuto, Nakamura, Toru, Kobayashi, Yasuaki, Ozu, Takashi, Ishizaka, Masahito, Hashimoto, Masayuki, Yokoyama, Hiroyuki, Miyake, Yutaka, Kiyomoto, Shinsaku.  2021.  Automatic Security Inspection Framework for Trustworthy Supply Chain. 2021 IEEE/ACIS 19th International Conference on Software Engineering Research, Management and Applications (SERA). :45—50.
Threats and risks against supply chains are increasing and a framework to add the trustworthiness of supply chain has been considered. In this framework, organisations in the supply chain validate the conformance to the pre-defined requirements. The results of validations are linked each other to achieve the trustworthiness of the entire supply chain. In this paper, we further consider this framework for data supply chains. First, we implement the framework and evaluate the performance. The evaluation shows 500 digital evidences (logs) can be checked in 0.28 second. We also propose five methods to improve the performance as well as five new functionalities to improve usability. With these functionalities, the framework also supports maintaining the certificate chain.
2022-03-10
Ozan, Şükrü, Taşar, D. Emre.  2021.  Auto-tagging of Short Conversational Sentences using Natural Language Processing Methods. 2021 29th Signal Processing and Communications Applications Conference (SIU). :1—4.
In this study, we aim to find a method to autotag sentences specific to a domain. Our training data comprises short conversational sentences extracted from chat conversations between company's customer representatives and web site visitors. We manually tagged approximately 14 thousand visitor inputs into ten basic categories, which will later be used in a transformer-based language model with attention mechanisms for the ultimate goal of developing a chatbot application that can produce meaningful dialogue.We considered three different stateof- the-art models and reported their auto-tagging capabilities. We achieved the best performance with the bidirectional encoder representation from transformers (BERT) model. Implementation of the models used in these experiments can be cloned from our GitHub repository and tested for similar auto-tagging problems without much effort.
2022-03-14
Ouyang, Yuankai, Li, Beibei, Kong, Qinglei, Song, Han, Li, Tao.  2021.  FS-IDS: A Novel Few-Shot Learning Based Intrusion Detection System for SCADA Networks. ICC 2021 - IEEE International Conference on Communications. :1—6.

Supervisory control and data acquisition (SCADA) networks provide high situational awareness and automation control for industrial control systems, whilst introducing a wide range of access points for cyber attackers. To address these issues, a line of machine learning or deep learning based intrusion detection systems (IDSs) have been presented in the literature, where a large number of attack examples are usually demanded. However, in real-world SCADA networks, attack examples are not always sufficient, having only a few shots in many cases. In this paper, we propose a novel few-shot learning based IDS, named FS-IDS, to detect cyber attacks against SCADA networks, especially when having only a few attack examples in the defenders’ hands. Specifically, a new method by orchestrating one-hot encoding and principal component analysis is developed, to preprocess SCADA datasets containing sufficient examples for frequent cyber attacks. Then, a few-shot learning based preliminary IDS model is designed and trained using the preprocessed data. Last, a complete FS-IDS model for SCADA networks is established by further training the preliminary IDS model with a few examples for cyber attacks of interest. The high effectiveness of the proposed FS-IDS, in detecting cyber attacks against SCADA networks with only a few examples, is demonstrated by extensive experiments on a real SCADA dataset.

2022-01-10
Stan, Orly, Bitton, Ron, Ezrets, Michal, Dadon, Moran, Inokuchi, Masaki, Ohta, Yoshinobu, Yagyu, Tomohiko, Elovici, Yuval, Shabtai, Asaf.  2021.  Heuristic Approach for Countermeasure Selection Using Attack Graphs. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1–16.
Selecting the optimal set of countermeasures to secure a network is a challenging task, since it involves various considerations and trade-offs, such as prioritizing the risks to mitigate given the mitigation costs. Previously suggested approaches are based on limited and largely manual risk assessment procedures, provide recommendations for a specific event, or don't consider the organization's constraints (e.g., limited budget). In this paper, we present an improved attack graph-based risk assessment process and apply heuristic search to select an optimal countermeasure plan for a given network and budget. The risk assessment process represents the risk in the system in such a way that incorporates the quantitative risk factors and relevant countermeasures; this allows us to assess the risk in the system under different countermeasure plans during the search, without the need to regenerate the attack graph. We also provide a detailed description of countermeasure modeling and discuss how the countermeasures can be automatically matched to the security issues discovered in the network.
2022-02-04
Kruv, A., McMitchell, S. R. C., Clima, S., Okudur, O. O., Ronchi, N., Van den bosch, G., Gonzalez, M., De Wolf, I., Houdt, J.Van.  2021.  Impact of mechanical strain on wakeup of HfO2 ferroelectric memory. 2021 IEEE International Reliability Physics Symposium (IRPS). :1–6.
This work investigates the impact of mechanical strain on wake-up behavior of planar HfO2 ferroelectric capacitor-based memory. External in-plane strain was applied using a four-point bending tool and strain impact on remanent polarization and coercive voltage of the ferroelectric was monitored. It was established that compressive strain is beneficial for 2Pr improvement, while tensile strain leads to its degradation, with a sensitivity of -8.4 ± 0.5 % per 0.1 % of strain. Strain-induced polarization rotation is considered to be the most likely mechanism affecting 2Pr At the same time, no strain impact on Vcwas observed in the investigated strain range. The results seen here can be utilized to undertake stress engineering of ferroelectric memory in order to improve its performance.
2022-03-01
Omid Azarkasb, Seyed, Sedighian Kashi, Saeed, Hossein Khasteh, Seyed.  2021.  A Network Intrusion Detection Approach at the Edge of Fog. 2021 26th International Computer Conference, Computer Society of Iran (CSICC). :1–6.
In addition to the feature of real-time analytics, fog computing allows detection nodes to be located at the edges of the network. On the other hand, intrusion detection systems require prompt and accurate attack analysis and detection. These systems must promptly respond appropriately to an event. Increasing the speed of data transfer and response requires less bandwidth in the network, reducing the data sent to the cloud and increasing information security as some of the advantages of using detection nodes at the edges of the network in fog computing. The use of neural networks in the analyzer engine is important for the low consumption of system resources, avoidance of explicit production of detection rules, detection of known deformed attacks, and the ability to manage noise and outlier data. The current paper proposes and implements the architecture of network intrusion detection nodes in fog computing, in addition to presenting the proposed fog network architecture. In the proposed architecture, each node can, in addition to performing intrusion detection operations, observe the nodes around it, find the compromised node or intrusion node, and inform the nodes close to it to disconnect from that node.