Biblio

Found 2688 results

Filters: First Letter Of Last Name is P  [Clear All Filters]
2021-09-16
Grusho, A., Nikolaev, A., Piskovski, V., Sentchilo, V., Timonina, E..  2020.  Endpoint Cloud Terminal as an Approach to Secure the Use of an Enterprise Private Cloud. 2020 International Scientific and Technical Conference Modern Computer Network Technologies (MoNeTeC). :1–4.
Practical activities usually require the ability to simultaneously work with internal, distributed information resources and access to the Internet. The need to solve this problem necessitates the use of appropriate administrative and technical methods to protect information. Such methods relate to the idea of domain isolation. This paper considers the principles of implementation and properties of an "Endpoint Cloud Terminal" that is general-purpose software tool with built-in security instruments. This apparatus solves the problem by combining an arbitrary number of isolated and independent workplaces on one hardware unit, a personal computer.
2020-12-28
Quincozes, S. E., Passos, D., Albuquerque, C., Ochi, L. S., Mossé, D..  2020.  GRASP-based Feature Selection for Intrusion Detection in CPS Perception Layer. 2020 4th Conference on Cloud and Internet of Things (CIoT). :41—48.

Cyber-Physical Systems (CPS) will form the basis for the world's critical infrastructure and, thus, have the potential to significantly impact human lives in the near future. In recent years, there has been an increasing demand for connectivity in CPS, which has brought to attention the issue of cyber security. Aside from traditional information systems threats, CPS faces new challenges due to the heterogeneity of devices and protocols. In this paper, we investigate how Feature Selection may improve intrusion detection accuracy. In particular, we propose an adapted Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic to improve the classification performance in CPS perception layer. Our numerical results reveal that GRASP metaheuristic overcomes traditional filter-based feature selection methods for detecting four attack classes in CPSs.

2021-06-24
Moran, Kevin, Palacio, David N., Bernal-Cárdenas, Carlos, McCrystal, Daniel, Poshyvanyk, Denys, Shenefiel, Chris, Johnson, Jeff.  2020.  Improving the Effectiveness of Traceability Link Recovery using Hierarchical Bayesian Networks. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :873—885.
Traceability is a fundamental component of the modern software development process that helps to ensure properly functioning, secure programs. Due to the high cost of manually establishing trace links, researchers have developed automated approaches that draw relationships between pairs of textual software artifacts using similarity measures. However, the effectiveness of such techniques are often limited as they only utilize a single measure of artifact similarity and cannot simultaneously model (implicit and explicit) relationships across groups of diverse development artifacts. In this paper, we illustrate how these limitations can be overcome through the use of a tailored probabilistic model. To this end, we design and implement a HierarchiCal PrObabilistic Model for SoftwarE Traceability (Comet) that is able to infer candidate trace links. Comet is capable of modeling relationships between artifacts by combining the complementary observational prowess of multiple measures of textual similarity. Additionally, our model can holistically incorporate information from a diverse set of sources, including developer feedback and transitive (often implicit) relationships among groups of software artifacts, to improve inference accuracy. We conduct a comprehensive empirical evaluation of Comet that illustrates an improvement over a set of optimally configured baselines of ≈14% in the best case and ≈5% across all subjects in terms of average precision. The comparative effectiveness of Comet in practice, where optimal configuration is typically not possible, is likely to be higher. Finally, we illustrate Comet's potential for practical applicability in a survey with developers from Cisco Systems who used a prototype Comet Jenkins plugin.
2021-05-20
Usher, Will, Pascucci, Valerio.  2020.  Interactive Visualization of Terascale Data in the Browser: Fact or Fiction? 2020 IEEE 10th Symposium on Large Data Analysis and Visualization (LDAV). :27—36.

Information visualization applications have become ubiquitous, in no small part thanks to the ease of wide distribution and deployment to users enabled by the web browser. Scientific visualization applications, relying on native code libraries and parallel processing, have been less suited to such widespread distribution, as browsers do not provide the required libraries or compute capabilities. In this paper, we revisit this gap in visualization technologies and explore how new web technologies, WebAssembly and WebGPU, can be used to deploy powerful visualization solutions for large-scale scientific data in the browser. In particular, we evaluate the programming effort required to bring scientific visualization applications to the browser through these technologies and assess their competitiveness against classic native solutions. As a main example, we present a new GPU-driven isosurface extraction method for block-compressed data sets, that is suitable for interactive isosurface computation on large volumes in resource-constrained environments, such as the browser. We conclude that web browsers are on the verge of becoming a competitive platform for even the most demanding scientific visualization tasks, such as interactive visualization of isosurfaces from a 1TB DNS simulation. We call on researchers and developers to consider investing in a community software stack to ease use of these upcoming browser features to bring accessible scientific visualization to the browser.

2021-08-02
Cedillo, Priscila, Riofrio, Xavier, Prado, Daniela, Orellana, Marcos.  2020.  A Middleware for Managing the Heterogeneity of Data Provining from IoT Devices in Ambient Assisted Living Environments. 2020 IEEE ANDESCON. :1—6.
Internet of Things (IoT) has been growing exponentially in the commercial market in recent years. It is also a fact that people hold one or more computing devices at home. Many of them have been developed to operate through internet connectivity with cloud computing technologies that result in the demand for fast, robust, and secure services. In most cases, the lack of these services makes difficult the transfer of data to fulfill the devices' purposes. Under these conditions, an intermediate layer or middleware is needed to process, filter, and send data through a more efficient alternative. This paper presents the adaptive solution of a middleware architecture as an intermediate layer between smart devices and cloud computing to enhance the management of the heterogeneity of data provining from IoT devices. The proposed middleware provides easy configuration, adaptability, and bearability for different environments. Finally, this solution has been implemented in the healthcare domain, in which IoT solutions are deployed into Ambient Assisted Living (AAL) environments.
Pereira, José D’Abruzzo.  2020.  Techniques and Tools for Advanced Software Vulnerability Detection. 2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :123—126.
Software is frequently deployed with vulnerabilities that may allow hackers to gain access to the system or information, leading to money or reputation losses. Although there are many techniques to detect software vulnerabilities, their effectiveness is far from acceptable, especially in large software projects, as shown by several research works. This Ph.D. aims to study the combination of different techniques to improve the effectiveness of vulnerability detection (increasing the detection rate and decreasing the number of false-positives). Static Code Analysis (SCA) has a good detection rate and is the central technique of this work. However, as SCA reports many false-positives, we will study the combination of various SCA tools and the integration with other detection approaches (e.g., software metrics) to improve vulnerability detection capabilities. We will also study the use of such combination to prioritize the reported vulnerabilities and thus guide the development efforts and fixes in resource-constrained projects.
2021-08-12
Zheng, Yifeng, Pal, Arindam, Abuadbba, Sharif, Pokhrel, Shiva Raj, Nepal, Surya, Janicke, Helge.  2020.  Towards IoT Security Automation and Orchestration. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :55—63.
The massive boom of Internet of Things (IoT) has led to the explosion of smart IoT devices and the emergence of various applications such as smart cities, smart grids, smart mining, connected health, and more. While the proliferation of IoT systems promises many benefits for different sectors, it also exposes a large attack surface, raising an imperative need to put security in the first place. It is impractical to heavily rely on manual operations to deal with security of massive IoT devices and applications. Hence, there is a strong need for securing IoT systems with minimum human intervention. In light of this situation, in this paper, we envision security automation and orchestration for IoT systems. After conducting a comprehensive evaluation of the literature and having conversations with industry partners, we envision a framework integrating key elements towards this goal. For each element, we investigate the existing landscapes, discuss the current challenges, and identify future directions. We hope that this paper will bring the attention of the academic and industrial community towards solving challenges related to security automation and orchestration for IoT systems.
2021-06-30
Wang, Chenguang, Pan, Kaikai, Tindemans, Simon, Palensky, Peter.  2020.  Training Strategies for Autoencoder-based Detection of False Data Injection Attacks. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1—5.
The security of energy supply in a power grid critically depends on the ability to accurately estimate the state of the system. However, manipulated power flow measurements can potentially hide overloads and bypass the bad data detection scheme to interfere the validity of estimated states. In this paper, we use an autoencoder neural network to detect anomalous system states and investigate the impact of hyperparameters on the detection performance for false data injection attacks that target power flows. Experimental results on the IEEE 118 bus system indicate that the proposed mechanism has the ability to achieve satisfactory learning efficiency and detection accuracy.
2022-02-10
Ponomarenko, Vladimir, Navrotskaya, Elena, Prokhorov, Mikhail, Lapsheva, Elena, Ishbulatov, Yuri.  2020.  Communication System Based on Chaotic Time-Delayed Feedback Generator. 2020 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR). :192–194.
We study communication systems based on chaotic time-delayed feedback generator. The aim of the study is a comparative assessment of the noise immunity for the four different communication systems at the same levels of the external noise. It is shown that the principle of correlation receiver, which is used in classical communication systems, can be also used in the case where chaotic signals generated by self-oscillating systems with complex behavior are used as reference signals. Systems based on the correlation receiver principles have very high immunity to the external noise.
2021-09-30
Boespflug, Etienne, Ene, Cristian, Mounier, Laurent, Potet, Marie-Laure.  2020.  Countermeasures Optimization in Multiple Fault-Injection Context. 2020 Workshop on Fault Detection and Tolerance in Cryptography (FDTC). :26–34.
Fault attacks consist in changing the program behavior by injecting faults at run-time, either at hardware or at software level. Their goal is to change the correct progress of the algorithm and hence, either to allow gaining some privilege access or to allow retrieving some secret information based on an analysis of the deviation of the corrupted behavior with respect to the original one. Countermeasures have been proposed to protect embedded systems by adding spatial, temporal or information redundancy at hardware or software level. First we define Countermeasures Check Point (CCP) and CCPs-based countermeasures as an important subclass of countermeasures. Then we propose a methodology to generate an optimal protection scheme for CCPs-based countermeasure. Finally we evaluate our work on a benchmark of code examples with respect to several Control Flow Integrity (CFI) oriented existing protection schemes.
2020-12-21
Pialov, K., Slutsky, R., Maizel, A..  2020.  Coupled calculation of hydrodynamic and acoustic characteristics in the far-field of the ship propulsor. 2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM). :1–6.
This report provides a calculation example of hydrodynamic and acoustic characteristics of the ship propulsor using numerical modelling with the help of RANS-models and eddy-resolving approaches in the hydrodynamics task, acoustic analogy in the acoustics tasks and harmonic analysis of the propulsor under hydrodynamic loads.
2021-02-10
Purohit, S., Calyam, P., Wang, S., Yempalla, R., Varghese, J..  2020.  DefenseChain: Consortium Blockchain for Cyber Threat Intelligence Sharing and Defense. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :112—119.
Cloud-hosted applications are prone to targeted attacks such as DDoS, advanced persistent threats, cryptojacking which threaten service availability. Recently, methods for threat information sharing and defense require co-operation and trust between multiple domains/entities. There is a need for mechanisms that establish distributed trust to allow for such a collective defense. In this paper, we present a novel threat intelligence sharing and defense system, namely “DefenseChain”, to allow organizations to have incentive-based and trustworthy co-operation to mitigate the impact of cyber attacks. Our solution approach features a consortium Blockchain platform to obtain threat data and select suitable peers to help with attack detection and mitigation. We propose an economic model for creation and sustenance of the consortium with peers through a reputation estimation scheme that uses `Quality of Detection' and `Quality of Mitigation' metrics. Our evaluation experiments with DefenseChain implementation are performed on an Open Cloud testbed with Hyperledger Composer and in a simulation environment. Our results show that the DefenseChain system overall performs better than state-of-the-art decision making schemes in choosing the most appropriate detector and mitigator peers. In addition, we show that our DefenseChain achieves better performance trade-offs in terms of metrics such as detection time, mitigation time and attack reoccurence rate. Lastly, our validation results demonstrate that our DefenseChain can effectively identify rational/irrational service providers.
2021-03-09
Bronzin, T., Prole, B., Stipić, A., Pap, K..  2020.  Individualization of Anonymous Identities Using Artificial Intelligence (AI). 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). :1058–1063.

Individualization of anonymous identities using artificial intelligence - enables innovative human-computer interaction through the personalization of communication which is, at the same time, individual and anonymous. This paper presents possible approach for individualization of anonymous identities in real time. It uses computer vision and artificial intelligence to automatically detect and recognize person's age group, gender, human body measures, proportions and other specific personal characteristics. Collected data constitutes the so-called person's biometric footprint and are linked to a unique (but still anonymous) identity that is recorded in the computer system, along with other information that make up the profile of the person. Identity anonymization can be achieved by appropriate asymmetric encryption of the biometric footprint (with no additional personal information being stored) and integrity can be ensured using blockchain technology. Data collected in this manner is GDPR compliant.

2021-08-17
Daru, April Firman, Dwi Hartomo, Kristoko, Purnomo, Hindriyanto Dwi.  2020.  Internet of Things Wireless Attack Detection Conceptual Model Over IPv6 Network. 2020 International Seminar on Application for Technology of Information and Communication (iSemantic). :431–435.
Wireless network is an alternative communication to cable, where radio wave is used as transmission media instead of copper medium. However, wireless network more vulnerable to risk in security compared to cable network. Wireless network mostly used by Internet of Things node as communication media between nodes. Hence, these nodes exposed to risk of flooding attack from third party person. Hence, a system which capability to detect flooding attack at IoT node is required. Many researches have been done before, but most of the research only focus to IPv4 and signature-based detection. IPv6-based attacks undetectable by the current research, due to different datagram structure. This paper proposed a conceptual detection method with reinforcement learning algorithm to detect IPv6-based attack targeting IoT nodes. This reward will decide whether the detection system is good or not. The assessment calculation equation is used to turn reward-based score into detection accuracy.
2021-11-29
Joyokusumo, Irfan, Putra, Handika, Fatchurrahman, Rifqi.  2020.  A Machine Learning-Based Strategy For Predicting The Fault Recovery Duration Class In Electric Power Transmission System. 2020 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP). :252–257.
Energy security program which becomes the part of energy management must ensure the high reliability of the electric power transmission system so that the customer can be served very well. However, there are several problems that can hinder reliability achievement such as the long duration of fault recovery. On the other side, the prediction of fault recovery duration becomes a very challenging task. Because there are still few machine learning-based solution offer this paper proposes a machine learning-based strategy by using Naive-Bayes Classifier (NBC) and Support Vector Machine (SVM) in predicting the fault recovery duration class. The dataset contains 3398 rows of non-temporary-fault type records, six input features (Substation, Asset Type, Fault Category, Outage Start Time, Outage Day, and Outage Month) and single target feature (Fault Recovery Duration). According to the performance test result, those two methods reach around 97-99% of accuracy, average sensitivity, and average specificity. In addition, one of the advantages obtained in field of fault recovery prediction is increasing the accuracy of likelihood level calculation of the long fault recovery time risk.
2021-06-01
Sharma, Rajesh Kumar, Pippal, Ravi Singh.  2020.  Malicious Attack and Intrusion Prevention in IoT Network using Blockchain based Security Analysis. 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN). :380–385.
The Internet of Things (IoT) as a demanding technology require the best features of information security for effective development of the IoT based smart city and technological activity. There are huge number of recent security threats searching for some loopholes which are ready to exploit any network. Against the back-drop of recent rapidly growing technological advancement of IoT, security-threats have become a critical challenge which demand responsive and continuous action. As privacy and security exhibit an ever-present flourishing issue, so loopholes detection and analysis are indispensable process in the network. This paper presents Block chain based security analysis of data generated from IoT devices to prevent malicious attacks and intrusion in the IoT network.
2021-09-07
Thie, Nicolas, Franken, Marco, Schwaeppe, Henrik, Böttcher, Luis, Müller, Christoph, Moser, Albert, Schumann, Klemens, Vigo, Daniele, Monaci, Michele, Paronuzzi, Paolo et al..  2020.  Requirements for Integrated Planning of Multi-Energy Systems. 2020 6th IEEE International Energy Conference (ENERGYCon). :696–701.
The successful realization of the climate goals agreed upon in the European Union's COP21 commitments makes a fundamental change of the European energy system necessary. In particular, for a reduction of greenhouse gas emissions over 80%, the use of renewable energies must be increased not only in the electricity sector but also across all energy sectors, such as heat and mobility. Furthermore, a progressive integration of renewable energies increases the risk of congestions in the transmission grid and makes network expansion necessary. An efficient planning for future energy systems must comprise the coupling of energy sectors as well as interdependencies of generation and transmission grid infrastructure. However, in traditional energy system planning, these aspects are considered as decoupled. Therefore, the project PlaMES develops an approach for integrated planning of multi-energy systems on a European scale. This paper aims at analyzing the model requirements and describing the modeling approach.
2021-03-15
Piessens, F..  2020.  Security across abstraction layers: old and new examples. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :271–279.
A common technique for building ICT systems is to build them as successive layers of bstraction: for instance, the Instruction Set Architecture (ISA) is an abstraction of the hardware, and compilers or interpreters build higher level abstractions on top of the ISA.The functionality of an ICT application can often be understood by considering only a single level of abstraction. For instance the source code of the application defines the functionality using the level of abstraction of the source programming language. Functionality can be well understood by just studying this source code.Many important security issues in ICT system however are cross-layer issues: they can not be understood by considering the system at a single level of abstraction, but they require understanding how multiple levels of abstraction are implemented. Attacks may rely on, or exploit, implementation details of one or more layers below the source code level of abstraction.The purpose of this paper is to illustrate this cross-layer nature of security by discussing old and new examples of cross-layer security issues, and by providing a classification of these issues.
2021-09-09
Samoshina, Anna, Promyslov, Vitaly, Kamesheva, Saniya, Galin, Rinat.  2020.  Application of Cloud Modeling Technologies in Ensuring Cyber Security of APCS. 2020 13th International Conference "Management of Large-Scale System Development" (MLSD). :1–5.
This paper describes the development of a module for calculating security zones in the cloud service of APCS modeling. A mathematical model based on graph theory is used. This allows you to describe access relationships between objects and security policy subjects. A comparative analysis of algorithms for traversing graph vertices is performed in order to select a suitable method for allocating security zones. The implemented algorithm for calculating security zones was added to the cloud service omole.ws.
2021-06-24
Stöckle, Patrick, Grobauer, Bernd, Pretschner, Alexander.  2020.  Automated Implementation of Windows-related Security-Configuration Guides. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :598—610.
Hardening is the process of configuring IT systems to ensure the security of the systems' components and data they process or store. The complexity of contemporary IT infrastructures, however, renders manual security hardening and maintenance a daunting task. In many organizations, security-configuration guides expressed in the SCAP (Security Content Automation Protocol) are used as a basis for hardening, but these guides by themselves provide no means for automatically implementing the required configurations. In this paper, we propose an approach to automatically extract the relevant information from publicly available security-configuration guides for Windows operating systems using natural language processing. In a second step, the extracted information is verified using the information of available settings stored in the Windows Administrative Template files, in which the majority of Windows configuration settings is defined. We show that our implementation of this approach can extract and implement 83% of the rules without any manual effort and 96% with minimal manual effort. Furthermore, we conduct a study with 12 state-of-the-art guides consisting of 2014 rules with automatic checks and show that our tooling can implement at least 97% of them correctly. We have thus significantly reduced the effort of securing systems based on existing security-configuration guides. In many organizations, security-configuration guides expressed in the SCAP (Security Content Automation Protocol) are used as a basis for hardening, but these guides by themselves provide no means for automatically implementing the required configurations. In this paper, we propose an approach to automatically extract the relevant information from publicly available security-configuration guides for Windows operating systems using natural language processing. In a second step, the extracted information is verified using the information of available settings stored in the Windows Administrative Template files, in which the majority of Windows configuration settings is defined. We show that our implementation of this approach can extract and implement 83% of the rules without any manual effort and 96% with minimal manual effort. Furthermore, we conduct a study with 12 state-of-the-art guides consisting of 2014 rules with automatic checks and show that our tooling can implement at least 97% of them correctly. We have thus significantly reduced the effort of securing systems based on existing security-configuration guides. In this paper, we propose an approach to automatically extract the relevant information from publicly available security-configuration guides for Windows operating systems using natural language processing. In a second step, the extracted information is verified using the information of available settings stored in the Windows Administrative Template files, in which the majority of Windows configuration settings is defined. We show that our implementation of this approach can extract and implement 83% of the rules without any manual effort and 96% with minimal manual effort. Furthermore, we conduct a study with 12 state-of-the-art guides consisting of 2014 rules with automatic checks and show that our tooling can implement at least 97% of them correctly. We have thus significantly reduced the effort of securing systems based on existing security-configuration guides. We show that our implementation of this approach can extract and implement 83% of the rules without any manual effort and 96% with minimal manual effort. Furthermore, we conduct a study with 12 state-of-the-art guides consisting of 2014 rules with automatic checks and show that our tooling can implement at least 97% of them correctly. We have thus significantly reduced the effort of securing systems based on existing security-configuration guides.
2021-05-13
Gomathi, S., Parmar, Nilesh, Devi, Jyoti, Patel, Namrata.  2020.  Detecting Malware Attack on Cloud using Deep Learning Vector Quantization. 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN). :356—361.

In recent times cloud services are used widely and due to which there are so many attacks on the cloud devices. One of the major attacks is DDos (distributed denial-of-service) -attack which mainly targeted the Memcached which is a caching system developed for speeding the websites and the networks through Memcached's database. The DDoS attack tries to destroy the database by creating a flood of internet traffic at the targeted server end. Attackers send the spoofing applications to the vulnerable UDP Memcached server which even manipulate the legitimate identity of the sender. In this work, we have proposed a vector quantization approach based on a supervised deep learning approach to detect the Memcached attack performed by the use of malicious firmware on different types of Cloud attached devices. This vector quantization approach detects the DDoas attack performed by malicious firmware on the different types of cloud devices and this also classifies the applications which are vulnerable to attack based on cloud-The Hackbeased services. The result computed during the testing shows the 98.2 % as legally positive and 0.034% as falsely negative.

2021-03-30
Baybulatov, A. A., Promyslov, V. G..  2020.  On a Deterministic Approach to Solving Industrial Control System Problems. 2020 International Russian Automation Conference (RusAutoCon). :115—120.

Since remote ages, queues and delays have been a rather exasperating reality of human daily life. Today, they pursue us everywhere: in technical, social, socio-technical, and even control systems, dramatically deteriorating their performance. In this variety, it is the computer systems that are sure to cause the growing anxiety in our digital era. Although for our everyday Internet surfing, experiencing long-lasting and annoying delays is an unpleasant but not dangerous situation, for industrial control systems, especially those dealing with critical infrastructures, such behavior is unacceptable. The article presents a deterministic approach to solving some digital control system problems associated with delays and backlogs. Being based on Network calculus, in contrast to statistical methods of Queuing theory, it provides worst-case results, which are eminently desirable for critical infrastructures. The article covers the basics of a theory of deterministic queuing systems Network calculus, its evolution regarding the relationship between backlog bound and delay, and a technique for handling empirical data. The problems being solved by the deterministic approach: standard calculation of network performance measures, estimation of database maximum updating time, and cybersecurity assessment including such issues as the CIA triad representation, operational technology influence, and availability understanding focusing on its correlation with a delay are thoroughly discussed as well.

2021-02-23
Gaber, C., Vilchez, J. S., Gür, G., Chopin, M., Perrot, N., Grimault, J.-L., Wary, J.-P..  2020.  Liability-Aware Security Management for 5G. 2020 IEEE 3rd 5G World Forum (5GWF). :133—138.

Multi-party and multi-layer nature of 5G networks implies the inherent distribution of management and orchestration decisions across multiple entities. Therefore, responsibility for management decisions concerning end-to-end services become blurred if no efficient liability and accountability mechanism is used. In this paper, we present the design, building blocks and challenges of a Liability-Aware Security Management (LASM) system for 5G. We describe how existing security concepts such as manifests and Security-by-Contract, root cause analysis, remote attestation, proof of transit, and trust and reputation models can be composed and enhanced to take risk and responsibilities into account for security and liability management.

2021-01-15
Pete, I., Hughes, J., Chua, Y. T., Bada, M..  2020.  A Social Network Analysis and Comparison of Six Dark Web Forums. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :484—493.

With increasing monitoring and regulation by platforms, communities with criminal interests are moving to the dark web, which hosts content ranging from whistle-blowing and privacy, to drugs, terrorism, and hacking. Using post discussion data from six dark web forums we construct six interaction graphs and use social network analysis tools to study these underground communities. We observe the structure of each network to highlight structural patterns and identify nodes of importance through network centrality analysis. Our findings suggest that in the majority of the forums some members are highly connected and form hubs, while most members have a lower number of connections. When examining the posting activities of central nodes we found that most of the central nodes post in sub-forums with broader topics, such as general discussions and tutorials. These members play different roles in the different forums, and within each forum we identified diverse user profiles.

2021-03-15
Lin, P., Jinshuang, W., Ping, C., Lanjuan, Y..  2020.  SQL Injection Attack and Detection Based on GreenSQL Pattern Input Whitelist. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :187—190.

With the rapid development of Internet technology, the era of big data is coming. SQL injection attack is the most common and the most dangerous threat to database. This paper studies the working mode and workflow of the GreenSQL database firewall. Based on the analysis of the characteristics and patterns of SQL injection attack command, the input model of GreenSQL learning is optimized by constructing the patterned input and optimized whitelist. The research method can improve the learning efficiency of GreenSQL and intercept samples in IPS mode, so as to effectively maintain the security of background database.