Biblio
This paper presents an overview of the H2020 project VESSEDIA [9] aimed at verifying the security and safety of modern connected systems also called IoT. The originality relies in using Formal Methods inherited from high-criticality applications domains to analyze the source code at different levels of intensity, to gather possible faults and weaknesses. The analysis methods are mostly exhaustive an guarantee that, after analysis, the source code of the application is error-free. This paper is structured as follows: after an introductory section 1 giving some factual data, section 2 presents the aims and the problems addressed; section 3 describes the project's use-cases and section 4 describes the proposed approach for solving these problems and the results achieved until now; finally, section 5 discusses some remaining future work.
We present a novel, and use case agnostic method of identifying and circumventing private data exposure across distributed and high-dimensional data repositories. Examples of distributed high-dimensional data repositories include medical research and treatment data, where oftentimes more than 300 describing attributes appear. As such, providing strong guarantees of data anonymity in these repositories is a hard constraint in adhering to privacy legislation. Yet, when applied to distributed high-dimensional data, existing anonymisation algorithms incur high levels of information loss and do not guarantee privacy defeating the purpose of anonymisation. In this paper, we address this issue by using Bayesian networks to handle data transformation for anonymisation. By evaluating every attribute combination to determine the privacy exposure risk, the conditional probability linking attribute pairs is computed. Pairs with a high conditional probability expose the risk of deanonymisation similar to quasi-identifiers and can be separated instead of deleted, as in previous algorithms. Attribute separation removes the risk of privacy exposure, and deletion avoidance results in a significant reduction in information loss. In other words, assimilating the conditional probability of outliers directly in the adjacency matrix in a greedy fashion is quick and thwarts de-anonymisation. Since identifying every privacy violating attribute combination is a W[2]-complete problem, we optimise the procedure with a multigrid solver method by evaluating the conditional probabilities between attribute pairs, and aggregating state space explosion of attribute pairs through manifold learning. Finally, incremental processing of new data is achieved through inexpensive, continuous (delta) learning.
As trust becomes increasingly important in the software domain. Due to its complex composite concept, people face great challenges, especially in today's dynamic and constantly changing internet technology. In addition, measuring the software trustworthiness correctly and effectively plays a significant role in gaining users trust in choosing different software. In the context of security, trust is previously measured based on the vulnerability time occurrence to predict the total number of vulnerabilities or their future occurrence time. In this study, we proposed a new unified index called "loss speed index" that integrates the most important variables of software security such as vulnerability occurrence time, number and severity loss, which are used to evaluate the overall software trust measurement. Based on this new definition, a new model called software trustworthy security growth model (STSGM) has been proposed. This paper also aims at filling the gap by addressing the severity of vulnerabilities and proposed a vulnerability severity prediction model, the results are further evaluated by STSGM to estimate the future loss speed index. Our work has several features such as: (1) It is used to predict the vulnerability severity/type in future, (2) Unlike traditional evaluation methods like expert scoring, our model uses historical data to predict the future loss speed of software, (3) The loss metric value is used to evaluate the risk associated with different software, which has a direct impact on software trustworthiness. Experiments performed on real software vulnerability datasets and its results are analyzed to check the correctness and effectiveness of the proposed model.
The fundamental aim of digital forensics is to discover, investigate and protect an evidence, increasing cybercrime enforces digital forensics team to have more accurate evidence handling. This makes digital evidence as an important factor to link individual with criminal activity. In this procedure of forensics investigation, maintaining integrity of the evidence plays an important role. A chain of custody refers to a process of recording and preserving details of digital evidence from collection to presenting in court of law. It becomes a necessary objective to ensure that the evidence provided to the court remains original and authentic without tampering. Aim is to transfer these digital evidences securely using encryption techniques.
Security of data in the Internet of Things (IoT) deals with Encryption to provide a stable secure system. The IoT device possess a constrained Main Memory and Secondary Memory that mandates the use of Elliptic Curve Cryptographic (ECC) scheme. The Scalar Multiplication has a great impact on the ECC implementations in reducing the Computation and Space Complexity, thereby enhancing the performance of an IoT System providing high Security and Privacy. The proposed High Speed Split Multiplier (HSSM) for ECC in IoT is a lightweight Multiplication technique that uses Split Multiplication with Pseudo-Mersenne Prime Number and Montgomery Curve to withstand the Power Analysis Attack. The proposed algorithm reduces the Computation Time and the Space Complexity of the Cryptographic operations in terms of Clock cycles and RAM when compared with Liu et al.,’s multiplication algorithms [1].
Wireless networks are currently proliferated by multiple tiers and heterogeneous networking equipment that aims to support multifarious services ranging from distant monitoring and control of wireless sensors to immersive virtual reality services. The vast collection of heterogeneous network equipment with divergent radio capabilities (e.g. multi-GHz operation) is vulnerable to wireless network attacks, raising questions on the service availability and coverage performance of future multi-tier wireless networks. In this paper, we study the impact of black hole attacks on service coverage of multi-tier heterogeneous wireless networks and derive closed form expressions when network nodes are unable to identify and avoid black hole nodes. Assuming access to multiple bands, the derived expressions can be readily used to assess the performance gains following from the employment of different association policies and the impact of black hole attacks in multi-tier wireless networks.
The huge volume, variety, and velocity of big data have empowered Machine Learning (ML) techniques and Artificial Intelligence (AI) systems. However, the vast portion of data used to train AI systems is sensitive information. Hence, any vulnerability has a potentially disastrous impact on privacy aspects and security issues. Nevertheless, the increased demands for high-quality AI from governments and companies require the utilization of big data in the systems. Several studies have highlighted the threats of big data on different platforms and the countermeasures to reduce the risks caused by attacks. In this paper, we provide an overview of the existing threats which violate privacy aspects and security issues inflicted by big data as a primary driving force within the AI/ML workflow. We define an adversarial model to investigate the attacks. Additionally, we analyze and summarize the defense strategies and countermeasures of these attacks. Furthermore, due to the impact of AI systems in the market and the vast majority of business sectors, we also investigate Standards Developing Organizations (SDOs) that are actively involved in providing guidelines to protect the privacy and ensure the security of big data and AI systems. Our far-reaching goal is to bridge the research and standardization frame to increase the consistency and efficiency of AI systems developments guaranteeing customer satisfaction while transferring a high degree of trustworthiness.
Realizing the importance of the concept of “smart city” and its impact on the quality of life, many infrastructures, such as power plants, began their digital transformation process by leveraging modern computing and advanced communication technologies. Unfortunately, by increasing the number of connections, power plants become more and more vulnerable and also an attractive target for cyber-physical attacks. The analysis of interdependencies among system components reveals interdependent connections, and facilitates the identification of those among them that are in need of special protection. In this paper, we review the recent literature which utilizes graph-based models and network-based models to study these interdependencies. A comprehensive overview, based on the main features of the systems including communication direction, control parameters, research target, scalability, security and safety, is presented. We also assess the computational complexity associated with the approaches presented in the reviewed papers, and we use this metric to assess the scalability of the approaches.
Malware is pervasive and poses serious threats to normal operation of business processes in cloud. Cloud computing environments typically have hundreds of hosts that are connected to each other, often with high risk trust assumptions and/or protection mechanisms that are not difficult to break. Malware often exploits such weaknesses, as its immediate goal is often to spread itself to as many hosts as possible. Detecting this propagation is often difficult to address because the malware may reside in multiple components across the software or hardware stack. In this scenario, it is usually best to contain the malware to the smallest possible number of hosts, and it's also critical for system administration to resolve the issue in a timely manner. Furthermore, resolution often requires that several participants across different organizational teams scramble together to address the intrusion. In this vision paper, we define this problem in detail. We then present our vision of decentralized malware containment and the challenges and issues associated with this vision. The approach of containment involves detection and response using graph analytics coupled with a blockchain framework. We propose the use of a dominance frontier for profile nodes which must be involved in the containment process. Smart contracts are used to obtain consensus amongst the involved parties. The paper presents a basic implementation of this proposal. We have further discussed some open problems related to our vision.
Public key cryptography plays a vital role in many information and communication systems for secure data transaction, authentication, identification, digital signature, and key management purpose. Elliptic curve cryptography (ECC) is a widely used public key cryptographic algorithm. In this paper, we propose a hardware-software codesign implementation of the ECC cipher. The algorithm is modelled in C language. Compute-intensive components are identified for their efficient hardware implementations. In the implementation, residue number system (RNS) with projective coordinates are utilized for performing the required arithmetic operations. To manage the hardware-software codeign in an integrated fashion Xilinx platform studio tool and Virtex-5 xc5vfx70t device based platform is utilized. An application of the implementation is demonstrated for encryption of text and its respective decryption over prime fields. The design is useful for providing an adequate level of security for IoTs.
Secure logging is essential for the integrity and accountability of cyber-physical systems (CPS). To prevent modification of log files the integrity of data must be ensured. In this work, we propose a solution for secure event in cyberphysical systems logging based on the blockchain technology, by encapsulating event data in blocks. The proposed solution considers the real-time application constraints that are inherent in CPS monitoring and control functions by optimizing the heterogeneous resources governing blockchain computations. In doing so, the proposed blockchain mechanism manages to deliver events in hard-to-tamper ledger blocks that can be accessed and utilized by the various functions and components of the system. Performance analysis of the proposed solution is conducted through extensive simulation, demonstrating the effectiveness of the proposed approach in delivering blocks of events on time using the minimum computational resources.
In cloud computing environments with many virtual machines, containers, and other systems, an epidemic of malware can be crippling and highly threatening to business processes. In this vision paper, we introduce a hierarchical approach to performing malware detection and analysis using several recent advances in machine learning on graphs, hypergraphs, and natural language. We analyze individual systems and their logs, inspecting and understanding their behavior with attentional sequence models. Given a feature representation of each system's logs using this procedure, we construct an attributed network of the cloud with systems and other components as vertices and propose an analysis of malware with inductive graph and hypergraph learning models. With this foundation, we consider the multicloud case, in which multiple clouds with differing privacy requirements cooperate against the spread of malware, proposing the use of federated learning to perform inference and training while preserving privacy. Finally, we discuss several open problems that remain in defending cloud computing environments against malware related to designing robust ecosystems, identifying cloud-specific optimization problems for response strategy, action spaces for malware containment and eradication, and developing priors and transfer learning tasks for machine learning models in this area.
Genetic Programming Hyper-heuristic (GPHH) has been successfully applied to automatically evolve effective routing policies to solve the complex Uncertain Capacitated Arc Routing Problem (UCARP). However, GPHH typically ignores the interpretability of the evolved routing policies. As a result, GP-evolved routing policies are often very complex and hard to be understood and trusted by human users. In this paper, we aim to improve the interpretability of the GP-evolved routing policies. To this end, we propose a new Multi-Objective GP (MOGP) to optimise the performance and size simultaneously. A major issue here is that the size is much easier to be optimised than the performance, and the search tends to be biased to the small but poor routing policies. To address this issue, we propose a simple yet effective Two-Stage GPHH (TS-GPHH). In the first stage, only the performance is to be optimised. Then, in the second stage, both objectives are considered (using our new MOGP). The experimental results showed that TS-GPHH could obtain much smaller and more interpretable routing policies than the state-of-the-art single-objective GPHH, without deteriorating the performance. Compared with traditional MOGP, TS-GPHH can obtain a much better and more widespread Pareto front.
PRIME protocol is a narrowband power line communication protocol whose security is based on Advanced Encryption Standard. However, the key expansion process of AES algorithm is not unidirectional, and each round of keys are linearly related to each other, it is less difficult for eavesdroppers to crack AES encryption algorithm, leading to threats to the security of PRIME protocol. To solve this problem, this paper proposes an improvement of PRIME protocol based on chaotic cryptography. The core of this method is to use Chebyshev chaotic mapping and Logistic chaotic mapping to generate each round of key in the key expansion process of AES algorithm, In this way, the linear correlation between the key rounds can be reduced, making the key expansion process unidirectional, increasing the crack difficulty of AES encryption algorithm, and improving the security of PRIME protocol.
Many consumers now rely on different forms of voice assistants, both stand-alone devices and those built into smartphones. Currently, these systems react to specific wake-words, such as "Alexa," "Siri," or "Ok Google." However, with advancements in natural language processing, the next generation of voice assistants could instead always listen to the acoustic environment and proactively provide services and recommendations based on conversations without being explicitly invoked. We refer to such devices as "always listening voice assistants" and explore expectations around their potential use. In this paper, we report on a 178-participant survey investigating the potential services people anticipate from such a device and how they feel about sharing their data for these purposes. Our findings reveal that participants can anticipate a wide range of services pertaining to a conversation; however, most of the services are very similar to those that existing voice assistants currently provide with explicit commands. Participants are more likely to consent to share a conversation when they do not find it sensitive, they are comfortable with the service and find it beneficial, and when they already own a stand-alone voice assistant. Based on our findings we discuss the privacy challenges in designing an always-listening voice assistant.