Biblio

Found 5938 results

Filters: First Letter Of Last Name is S  [Clear All Filters]
2018-05-14
2018-05-23
S. Chen, J. Weimer, M. Rickels, A. Peleckis, I. Lee.  Submitted.  Physiology-Invariant Meal Detection for Type 1 Diabetes. Diabetes Technology and Therapeutics", year 201.

online first

2023-03-17
Wang, Yushi, Kamezaki, Mitsuhiro, Wang, Qichen, Sakamoto, Hiroyuki, Sugano, Shigeki.  2022.  3-Axis Force Estimation of a Soft Skin Sensor using Permanent Magnetic Elastomer (PME) Sheet with Strong Remanence. 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). :302–307.
This paper describes a prototype of a novel Permanent Magnetic Elastomer (PME) sheet based skin sensor for robotic applications. Its working principle is to use a Hall effect transducer to measure the change of magnetic field. PME is a polymer that has Neodymium particles distributed inside it, after strong magnetization for anisotropy, the PME acquires strong remanent magnetization that can be comparable to that of a permanent magnet, in this work, we made improvement of the strength of the magnetic field of PME, so it achieved magnetic strength as high as 25 mT when there is no deformation. When external forces apply on the sensor, the deformation of PME causes a change in the magnetic field due to the change in the alignment of the magnetic particles. Compared with other soft magnetic sensors that employ similar technology, we implemented linear regression method to simplify the calibration, so we focus on the point right above the magnetometer. An MLX90393 chip is installed at the bottom of the PME as the magnetometer. Experimental results show that it can measure forces from 0.01–10 N. Calibration is confirmed effective even for shear directions when the surface of PME is less than 15 x 15 mm.
ISSN: 2159-6255
2023-03-03
Sikandar, Hira Shahzadi, Sikander, Usman, Anjum, Adeel, Khan, Muazzam A..  2022.  An Adversarial Approach: Comparing Windows and Linux Security Hardness Using Mitre ATT&CK Framework for Offensive Security. 2022 IEEE 19th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET). :022–027.
Operating systems are essential software components for any computer. The goal of computer system manu-facturers is to provide a safe operating system that can resist a range of assaults. APTs (Advanced Persistent Threats) are merely one kind of attack used by hackers to penetrate organisations (APT). Here, we will apply the MITRE ATT&CK approach to analyze the security of Windows and Linux. Using the results of a series of vulnerability tests conducted on Windows 7, 8, 10, and Windows Server 2012, as well as Linux 16.04, 18.04, and its most current version, we can establish which operating system offers the most protection against future assaults. In addition, we have shown adversarial reflection in response to threats. We used ATT &CK framework tools to launch attacks on both platforms.
ISSN: 1949-4106
2023-08-03
Pardede, Hilman, Zilvan, Vicky, Ramdan, Ade, Yuliani, Asri R., Suryawati, Endang, Kusumowardani, Renni.  2022.  Adversarial Networks-Based Speech Enhancement with Deep Regret Loss. 2022 5th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5g//6G-based Interconnected Digital Worlds (NISS). :1–6.
Speech enhancement is often applied for speech-based systems due to the proneness of speech signals to additive background noise. While speech processing-based methods are traditionally used for speech enhancement, with advancements in deep learning technologies, many efforts have been made to implement them for speech enhancement. Using deep learning, the networks learn mapping functions from noisy data to clean ones and then learn to reconstruct the clean speech signals. As a consequence, deep learning methods can reduce what is so-called musical noise that is often found in traditional speech enhancement methods. Currently, one popular deep learning architecture for speech enhancement is generative adversarial networks (GAN). However, the cross-entropy loss that is employed in GAN often causes the training to be unstable. So, in many implementations of GAN, the cross-entropy loss is replaced with the least-square loss. In this paper, to improve the training stability of GAN using cross-entropy loss, we propose to use deep regret analytic generative adversarial networks (Dragan) for speech enhancements. It is based on applying a gradient penalty on cross-entropy loss. We also employ relativistic rules to stabilize the training of GAN. Then, we applied it to the least square and Dragan losses. Our experiments suggest that the proposed method improve the quality of speech better than the least-square loss on several objective quality metrics.
2023-08-04
Sinha, Arunesh.  2022.  AI and Security: A Game Perspective. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :393–396.
In this short paper, we survey some work at the intersection of Artificial Intelligence (AI) and security that are based on game theoretic considerations, and particularly focus on the author's (our) contribution in these areas. One half of this paper focuses on applications of game theoretic and learning reasoning for addressing security applications such as in public safety and wildlife conservation. In the second half, we present recent work that attacks the learning components of these works, leading to sub-optimal defense allocation. We finally end by pointing to issues and potential research problems that can arise due to data quality in the real world.
ISSN: 2155-2509
2023-01-06
Salama, Ramiz, Al-Turjman, Fadi.  2022.  AI in Blockchain Towards Realizing Cyber Security. 2022 International Conference on Artificial Intelligence in Everything (AIE). :471—475.
Blockchain and artificial intelligence are two technologies that, when combined, have the ability to help each other realize their full potential. Blockchains can guarantee the accessibility and consistent admittance to integrity safeguarded big data indexes from numerous areas, allowing AI systems to learn more effectively and thoroughly. Similarly, artificial intelligence (AI) can be used to offer new consensus processes, and hence new methods of engaging with Blockchains. When it comes to sensitive data, such as corporate, healthcare, and financial data, various security and privacy problems arise that must be properly evaluated. Interaction with Blockchains is vulnerable to data credibility checks, transactional data leakages, data protection rules compliance, on-chain data privacy, and malicious smart contracts. To solve these issues, new security and privacy-preserving technologies are being developed. AI-based blockchain data processing, either based on AI or used to defend AI-based blockchain data processing, is emerging to simplify the integration of these two cutting-edge technologies.
2023-02-17
Kaura, Cheerag, Sindhwani, Nidhi, Chaudhary, Alka.  2022.  Analysing the Impact of Cyber-Threat to ICS and SCADA Systems. 2022 International Mobile and Embedded Technology Conference (MECON). :466–470.
The aim of this paper is to examine noteworthy cyberattacks that have taken place against ICS and SCADA systems and to analyse them. This paper also proposes a new classification scheme based on the severity of the attack. Since the information revolution, computers and associated technologies have impacted almost all aspects of daily life, and this is especially true of the industrial sector where one of the leading trends is that of automation. This widespread proliferation of computers and computer networks has also made it easier for malicious actors to gain access to these systems and networks and carry out harmful activities.
2023-06-22
Park, Soyoung, Kim, Jongseok, Lim, Younghoon, Seo, Euiseong.  2022.  Analysis and Mitigation of Data Sanitization Overhead in DAX File Systems. 2022 IEEE 40th International Conference on Computer Design (ICCD). :255–258.
A direct access (DAX) file system maximizes the benefit of persistent memory(PM)’s low latency through removing the page cache layer from the file system access paths. However, this paper reveals that data block allocation of the DAX file systems in common is significantly slower than that of conventional file systems because the DAX file systems require the zero-out operation for the newly allocated blocks to prevent the leakage of old data previously stored in the allocated data blocks. The retarded block allocation significantly affects the file write performance. In addition to this revelation, this paper proposes an off-critical-path data block sanitization scheme tailored for DAX file systems. The proposed scheme detaches the zero-out operation from the latency-critical I/O path and performs that of released data blocks in the background. The proposed scheme’s design principle is universally applicable to most DAX file systems. For evaluation, we implemented our approach in Ext4-DAX and XFS-DAX. Our evaluation showed that the proposed scheme reduces the append write latency by 36.8%, and improved the performance of FileBench’s fileserver workload by 30.4%, YCSB’s workload A on RocksDB by 3.3%, and the Redis-benchmark by 7.4% on average, respectively.
ISSN: 2576-6996
2023-01-13
Syed, Shameel, Khuhawar, Faheem, Talpur, Shahnawaz, Memon, Aftab Ahmed, Luque-Nieto, Miquel-Angel, Narejo, Sanam.  2022.  Analysis of Dynamic Host Control Protocol Implementation to Assess DoS Attacks. 2022 Global Conference on Wireless and Optical Technologies (GCWOT). :1—7.
Dynamic Host Control Protocol (DHCP) is a protocol which provides IP addresses and network configuration parameters to the hosts present in the network. This protocol is deployed in small, medium, and large size organizations which removes the burden from network administrator to manually assign network parameters to every host in the network for establishing communication. Every vendor who plans to incorporate DHCP service in its device follows the working flow defined in Request for Comments (RFC). DHCP Starvation and DHCP Flooding attack are Denial of Service (DoS) attacks to prevents provision of IP addresses by DHCP. Port Security and DHCP snooping are built-in security features which prevents these DoS attacks. However, novel techniques have been devised to bypass these security features which uses ARP and ICMP protocol to perform the attack. The purpose of this research is to analyze implementation of DHCP in multiple devices to verify the involvement of both ARP and ICMP in the address acquisition process of DHCP as per RFC and to validate the results of prior research which assumes ARP or ICMP are used by default in all of devices.
2023-07-14
Sivajyothi, Mithakala, T, Devi..  2022.  Analysis of Elliptic Curve Cryptography with AES for Protecting Data in Cloud with improved Time efficiency. 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). 2:573–577.
Aim: Data is secured in the cloud using Elliptic Curve Cryptography (ECC) compared with Advanced Encryption Standard (AES) with improved time efficiency. Materials and Methods: Encryption and decryption time is performed with files stored in the cloud. Protecting data with improved time efficiency is carried out using ECC where the number of samples (\textbackslashmathrmN=6) and AES (\textbackslashmathrmN=6), obtained using the G-power value of 80%. Results: Mean time of ECC is 0.1683 and RSA is 0.7517. Significant value for the proposed system is 0.643 (\textbackslashmathrmp \textgreater 0.05). Conclusion: Within the limit of study, ECC performs faster in less consumption time when compared to AES.
2023-09-08
Shi, Kun, Chen, Songsong, Li, Dezhi, Tian, Ke, Feng, Meiling.  2022.  Analysis of the Optimized KNN Algorithm for the Data Security of DR Service. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). :1634–1637.
The data of large-scale distributed demand-side iot devices are gradually migrated to the cloud. This cloud deployment mode makes it convenient for IoT devices to participate in the interaction between supply and demand, and at the same time exposes various vulnerabilities of IoT devices to the Internet, which can be easily accessed and manipulated by hackers to launch large-scale DDoS attacks. As an easy-to-understand supervised learning classification algorithm, KNN can obtain more accurate classification results without too many adjustment parameters, and has achieved many research achievements in the field of DDoS detection. However, in the face of high-dimensional data, this method has high operation cost, high cost and not practical. Aiming at this disadvantage, this chapter explores the potential of classical KNN algorithm in data storage structure, K-nearest neighbor search and hyperparameter optimization, and proposes an improved KNN algorithm for DDoS attack detection of demand-side IoT devices.
2022-12-09
Thiagarajan, K., Dixit, Chandra Kumar, Panneerselvam, M., Madhuvappan, C.Arunkumar, Gadde, Samata, Shrote, Jyoti N.  2022.  Analysis on the Growth of Artificial Intelligence for Application Security in Internet of Things. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :6—12.
Artificial intelligence is a subfield of computer science that refers to the intelligence displayed by machines or software. The research has influenced the rapid development of smart devices that have a significant impact on our daily lives. Science, engineering, business, and medicine have all improved their prediction powers in order to make our lives easier in our daily tasks. The quality and efficiency of regions that use artificial intelligence has improved, as shown in this study. It successfully handles data organisation and environment difficulties, allowing for the development of a more solid and rigorous model. The pace of life is quickening in the digital age, and the PC Internet falls well short of meeting people’s needs. Users want to be able to get convenient network information services at any time and from any location
2023-06-22
Hasegawa, Taichi, Saito, Taiichi, Sasaki, Ryoichi.  2022.  Analyzing Metadata in PDF Files Published by Police Agencies in Japan. 2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C). :145–151.
In recent years, new types of cyber attacks called targeted attacks have been observed. It targets specific organizations or individuals, while usual large-scale attacks do not focus on specific targets. Organizations have published many Word or PDF files on their websites. These files may provide the starting point for targeted attacks if they include hidden data unintentionally generated in the authoring process. Adhatarao and Lauradoux analyzed hidden data found in the PDF files published by security agencies in many countries and showed that many PDF files potentially leak information like author names, details on the information system and computer architecture. In this study, we analyze hidden data of PDF files published on the website of police agencies in Japan and compare the results with Adhatarao and Lauradoux's. We gathered 110989 PDF files. 56% of gathered PDF files contain personal names, organization names, usernames, or numbers that seem to be IDs within the organizations. 96% of PDF files contain software names.
ISSN: 2693-9371
2022-12-09
Ikeda, Yoshiki, Sawada, Kenji.  2022.  Anomaly Detection and Anomaly Location Model for Multiple Attacks Using Finite Automata. 2022 IEEE International Conference on Consumer Electronics (ICCE). :01—06.
In control systems, the operation of the system after an incident occurs is important. This paper proposes to design a whitelist model that can detect anomalies and identify locations of anomalous actuators using finite automata during multiple actuators attack. By applying this model and comparing the whitelist model with the operation data, the monitoring system detects anomalies and identifies anomaly locations of actuator that deviate from normal operation. We propose to construct a whitelist model focusing on the order of the control system operation using binary search trees, which can grasp the state of the system when anomalies occur. We also apply combinatorial compression based on BDD (Binary Decision Diagram) to the model to speed up querying and identification of abnormalities. Based on the model designed in this study, we aim to construct a secured control system that selects and executes an appropriate fallback operation based on the state of the system when anomaly is detected.
2023-08-18
Li, Shijie, Liu, Junjiao, Pan, Zhiwen, Lv, Shichao, Si, Shuaizong, Sun, Limin.  2022.  Anomaly Detection based on Robust Spatial-temporal Modeling for Industrial Control Systems. 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS). :355—363.
Industrial Control Systems (ICS) are increasingly facing the threat of False Data Injection (FDI) attacks. As an emerging intrusion detection scheme for ICS, process-based Intrusion Detection Systems (IDS) can effectively detect the anomalies caused by FDI attacks. Specifically, such IDS establishes anomaly detection model which can describe the normal pattern of industrial processes, then perform real-time anomaly detection on industrial process data. However, this method suffers low detection accuracy due to the complexity and instability of industrial processes. That is, the process data inherently contains sophisticated nonlinear spatial-temporal correlations which are hard to be explicitly described by anomaly detection model. In addition, the noise and disturbance in process data prevent the IDS from distinguishing the real anomaly events. In this paper, we propose an Anomaly Detection approach based on Robust Spatial-temporal Modeling (AD-RoSM). Concretely, to explicitly describe the spatial-temporal correlations within the process data, a neural based state estimation model is proposed by utilizing 1D CNN for temporal modeling and multi-head self attention mechanism for spatial modeling. To perform robust anomaly detection in the presence of noise and disturbance, a composite anomaly discrimination model is designed so that the outputs of the state estimation model can be analyzed with a combination of threshold strategy and entropy-based strategy. We conducted extensive experiments on two benchmark ICS security datasets to demonstrate the effectiveness of our approach.
2023-07-12
Sreeja, C.S., Misbahuddin, Mohammed.  2022.  Anticounterfeiting Method for Drugs Using Synthetic DNA Cryptography. 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies (TQCEBT). :1—5.
Counterfeited products are a significant problem in both developed and developing countries and has become more critical as an aftermath of COVID-19, exclusively for drugs and medical equipment’s. In this paper, an innovative approach is proposed to resist counterfeiting which is based on the principles of Synthetic DNA. The proposed encryption approach has employed the distinctive features of synthetic DNA in amalgamation with DNA encryption to provide information security and functions as an anticounterfeiting method that ensures usability. The scheme’s security analysis and proof of concept are detailed. Scyther is used to carry out the formal analysis of the scheme, and all of the modeled assertions are verified without any attacks.
2023-02-03
Wibawa, Dikka Aditya Satria, Setiawan, Hermawan, Girinoto.  2022.  Anti-Phishing Game Framework Based on Extended Design Play Experience (DPE) Framework as an Educational Media. 2022 7th International Workshop on Big Data and Information Security (IWBIS). :107–112.
The main objective of this research is to increase security awareness against phishing attacks in the education sector by teaching users about phishing URLs. The educational media was made based on references from several previous studies that were used as basic references. Development of antiphishing game framework educational media using the extended DPE framework. Participants in this study were vocational and college students in the technology field. The respondents included vocational and college students, each with as many as 30 respondents. To assess the level of awareness and understanding of phishing, especially phishing URLs, participants will be given a pre-test before playing the game, and after completing the game, the application will be given a posttest. A paired t-test was used to answer the research hypothesis. The results of data analysis show differences in the results of increasing identification of URL phishing by respondents before and after using educational media of the anti-phishing game framework in increasing security awareness against URL phishing attacks. More serious game development can be carried out in the future to increase user awareness, particularly in phishing or other security issues, and can be implemented for general users who do not have a background in technology.
2023-09-08
Sengul, M. Kutlu, Tarhan, Cigdem, Tecim, Vahap.  2022.  Application of Intelligent Transportation System Data using Big Data Technologies. 2022 Innovations in Intelligent Systems and Applications Conference (ASYU). :1–6.
Problems such as the increase in the number of private vehicles with the population, the rise in environmental pollution, the emergence of unmet infrastructure and resource problems, and the decrease in time efficiency in cities have put local governments, cities, and countries in search of solutions. These problems faced by cities and countries are tried to be solved in the concept of smart cities and intelligent transportation by using information and communication technologies in line with the needs. While designing intelligent transportation systems (ITS), beyond traditional methods, big data should be designed in a state-of-the-art and appropriate way with the help of methods such as artificial intelligence, machine learning, and deep learning. In this study, a data-driven decision support system model was established to help the business make strategic decisions with the help of intelligent transportation data and to contribute to the elimination of public transportation problems in the city. Our study model has been established using big data technologies and business intelligence technologies: a decision support system including data sources layer, data ingestion/ collection layer, data storage and processing layer, data analytics layer, application/presentation layer, developer layer, and data management/ data security layer stages. In our study, the decision support system was modeled using ITS data supported by big data technologies, where the traditional structure could not find a solution. This paper aims to create a basis for future studies looking for solutions to the problems of integration, storage, processing, and analysis of big data and to add value to the literature that is missing within the framework of the model. We provide both the lack of literature, eliminate the lack of models before the application process of existing data sets to the business intelligence architecture and a model study before the application to be carried out by the authors.
ISSN: 2770-7946
2023-04-14
Tikekar, Priyanka C., Sherekar, Swati S., Thakre, Vilas M..  2022.  An Approach for P2P Based Botnet Detection Using Machine Learning. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). :627–631.
The internet has developed and transformed the world dramatically in recent years, which has resulted in several cyberattacks. Cybersecurity is one of society’s most serious challenge, costing millions of dollars every year. The research presented here will look into this area, focusing on malware that can establish botnets, and in particular, detecting connections made by infected workstations connecting with the attacker’s machine. In recent years, the frequency of network security incidents has risen dramatically. Botnets have previously been widely used by attackers to carry out a variety of malicious activities, such as compromising machines to monitor their activities by installing a keylogger or sniffing traffic, launching Distributed Denial of Service (DDOS) attacks, stealing the identity of the machine or credentials, and even exfiltrating data from the user’s computer. Botnet detection is still a work in progress because no one approach exists that can detect a botnet’s whole ecosystem. A detailed analysis of a botnet, discuss numerous parameter’s result of detection methods related to botnet attacks, as well as existing work of botnet identification in field of machine learning are discuss here. This paper focuses on the comparative analysis of various classifier based on design of botnet detection technique which are able to detect P2P botnet using machine learning classifier.
2023-01-20
Rahim, Usva, Siddiqui, Muhammad Faisal, Javed, Muhammad Awais, Nafi, Nazmus.  2022.  Architectural Implementation of AES based 5G Security Protocol on FPGA. 2022 32nd International Telecommunication Networks and Applications Conference (ITNAC). :1–6.
Confidentiality and integrity security are the key challenges in future 5G networks. To encounter these challenges, various signature and key agreement protocols are being implemented in 5G systems to secure high-speed mobile-to-mobile communication. Many security ciphers such as SNOW 3G, Advanced Encryption Standard (AES), and ZUC are used for 5G security. Among these protocols, the AES algorithm has been shown to achieve higher hardware efficiency and throughput in the literature. In this paper, we implement the AES algorithm on Field Programmable Gate Array (FPGA) and real-time performance factors of the AES algorithm were exploited to best fit the needs and requirements of 5G. In addition, several modifications such as partial pipelining and deep pipelining (partial pipelining with sub-module pipelining) are implemented on Virtex 6 FPGA ML60S board to improve the throughput of the proposed design.
2023-02-17
Ruwin R. Ratnayake, R.M., Abeysiriwardhena, G.D.N.D.K., Perera, G.A.J., Senarathne, Amila, Ponnamperuma, R., Ganegoda, B.A..  2022.  ARGUS – An Adaptive Smart Home Security Solution. 2022 4th International Conference on Advancements in Computing (ICAC). :459–464.
Smart Security Solutions are in high demand with the ever-increasing vulnerabilities within the IT domain. Adjusting to a Work-From-Home (WFH) culture has become mandatory by maintaining required core security principles. Therefore, implementing and maintaining a secure Smart Home System has become even more challenging. ARGUS provides an overall network security coverage for both incoming and outgoing traffic, a firewall and an adaptive bandwidth management system and a sophisticated CCTV surveillance capability. ARGUS is such a system that is implemented into an existing router incorporating cloud and Machine Learning (ML) technology to ensure seamless connectivity across multiple devices, including IoT devices at a low migration cost for the customer. The aggregation of the above features makes ARGUS an ideal solution for existing Smart Home System service providers and users where hardware and infrastructure is also allocated. ARGUS was tested on a small-scale smart home environment with a Raspberry Pi 4 Model B controller. Its intrusion detection system identified an intrusion with 96% accuracy while the physical surveillance system predicts the user with 81% accuracy.
2023-02-03
Nelson, Jared Ray, Shekaramiz, Mohammad.  2022.  Authorship Verification via Linear Correlation Methods of n-gram and Syntax Metrics. 2022 Intermountain Engineering, Technology and Computing (IETC). :1–6.
This research evaluates the accuracy of two methods of authorship prediction: syntactical analysis and n-gram, and explores its potential usage. The proposed algorithm measures n-gram, and counts adjectives, adverbs, verbs, nouns, punctuation, and sentence length from the training data, and normalizes each metric. The proposed algorithm compares the metrics of training samples to testing samples and predicts authorship based on the correlation they share for each metric. The severity of correlation between the testing and training data produces significant weight in the decision-making process. For example, if analysis of one metric approximates 100% positive correlation, the weight in the decision is assigned a maximum value for that metric. Conversely, a 100% negative correlation receives the minimum value. This new method of authorship validation holds promise for future innovation in fraud protection, the study of historical documents, and maintaining integrity within academia.
2023-08-18
Varkey, Mariam, John, Jacob, S., Umadevi K..  2022.  Automated Anomaly Detection Tool for Industrial Control System. 2022 IEEE Conference on Dependable and Secure Computing (DSC). :1—6.
Industrial Control Systems (ICS) are not secure by design–with recent developments requiring them to connect to the Internet, they tend to be highly vulnerable. Additionally, attacks on critical infrastructures such as power grids and nuclear plants can cause significant damage and loss of lives. Since such attacks tend to generate anomalies in the systems, an efficient way of attack detection is to monitor the systems and identify anomalies in real-time. An automated anomaly detection tool is introduced in this paper. Additionally, the functioning of the systems is viewed as Finite State Automata. Specific sensor measurements are used to determine permissible transitions, and statistical measures such as the Interquartile Range are used to determine acceptable boundaries for the remaining sensor measurements provided by the system. Deviations from the boundaries or permissible transitions are considered as anomalies. An additional feature is the provision of a finite state automata diagram that provides the operational constraints of a system, given a set of regulated input. This tool showed a high anomaly detection rate when tested with three types of ICS. The concepts are also benchmarked against a state-of-the-art anomaly detection algorithm called Isolation Forest, and the results are provided.
2023-07-20
Khokhlov, Igor, Okutan, Ahmet, Bryla, Ryan, Simmons, Steven, Mirakhorli, Mehdi.  2022.  Automated Extraction of Software Names from Vulnerability Reports using LSTM and Expert System. 2022 IEEE 29th Annual Software Technology Conference (STC). :125—134.
Software vulnerabilities are closely monitored by the security community to timely address the security and privacy issues in software systems. Before a vulnerability is published by vulnerability management systems, it needs to be characterized to highlight its unique attributes, including affected software products and versions, to help security professionals prioritize their patches. Associating product names and versions with disclosed vulnerabilities may require a labor-intensive process that may delay their publication and fix, and thereby give attackers more time to exploit them. This work proposes a machine learning method to extract software product names and versions from unstructured CVE descriptions automatically. It uses Word2Vec and Char2Vec models to create context-aware features from CVE descriptions and uses these features to train a Named Entity Recognition (NER) model using bidirectional Long short-term memory (LSTM) networks. Based on the attributes of the product names and versions in previously published CVE descriptions, we created a set of Expert System (ES) rules to refine the predictions of the NER model and improve the performance of the developed method. Experiment results on real-life CVE examples indicate that using the trained NER model and the set of ES rules, software names and versions in unstructured CVE descriptions could be identified with F-Measure values above 0.95.