Biblio
Filters: First Letter Of Last Name is S [Clear All Filters]
DDOS Attack Detection in Wireless Network Based On MDR. 2022 3rd Information Technology To Enhance e-learning and Other Application (IT-ELA). :1–5.
.
2022. Intrusion detection systems (IDS) are most efficient way of defending against network-based attacks aimed at system devices, especially wireless devices. These systems are used in almost all large-scale IT infrastructures components, and they effected with different types of network attacks such as DDoS attack. Distributed Denial of-Services (DDoS) attacks the protocols and systems that are intended to provide services (to the public) are inherently vulnerable to attacks like DDoS, which were launched against a number of important Internet sites where security precautions were in place.
DDoS attack mitigation in cloud targets using scale-inside out assisted container separation. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
.
2022. From the past few years, DDoS attack incidents are continuously rising across the world. DDoS attackers have also shifted their target towards cloud environments as majority of services have shifted their operations to cloud. Various authors proposed distinct solutions to minimize the DDoS attacks effects on victim services and co-located services in cloud environments. In this work, we propose an approach by utilizing incoming request separation at the container-level. In addition, we advocate to employ scale-inside out [10] approach for all the suspicious requests. In this manner, we achieve the request serving of all the authenticated benign requests even in the presence of an attack. We also improve the usages of scale-inside out approach by applying it to a container which is serving the suspicious requests in a separate container. The results of our proposed technique show a significant decrease in the response time of benign users during the DDoS attack as compared with existing solutions.
Deep Neural Network Based Efficient Data Fusion Model for False Data Detection in Power System. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). :1462—1466.
.
2022. Cyberattack on power system brings new challenges on the development of modern power system. Hackers may implement false data injection attack (FDIA) to cause unstable operating conditions of the power system. However, data from different power internet of things usually contains a lot of redundancy, making it difficult for current efficient discriminant model to precisely identify FDIA. To address this problem, we propose a deep learning network-based data fusion model to handle features from measurement data in power system. Proposed model includes a data enrichment module and a data fusion module. We firstly employ feature engineering technique to enrich features from power system operation in time dimension. Subsequently, a long short-term memory based autoencoder (LSTM-AE) is designed to efficiently avoid feature space explosion problem during data enriching process. Extensive experiments are performed on several classical attack detection models over the load data set from IEEE 14-bus system and simulation results demonstrate that fused data from proposed model shows higher detection accuracy with respect to the raw data.
Defense Against Spectrum Sensing Data Falsification Attack in Cognitive Radio Networks using Machine Learning. 2022 30th International Conference on Electrical Engineering (ICEE). :974–979.
.
2022. Cognitive radio (CR) networks are an emerging and promising technology to improve the utilization of vacant bands. In CR networks, security is a very noteworthy domain. Two threatening attacks are primary user emulation (PUE) and spectrum sensing data falsification (SSDF). A PUE attacker mimics the primary user signals to deceive the legitimate secondary users. The SSDF attacker falsifies its observations to misguide the fusion center to make a wrong decision about the status of the primary user. In this paper, we propose a scheme based on clustering the secondary users to counter SSDF attacks. Our focus is on detecting and classifying each cluster as reliable or unreliable. We introduce two different methods using an artificial neural network (ANN) for both methods and five more classifiers such as support vector machine (SVM), random forest (RF), K-nearest neighbors (KNN), logistic regression (LR), and decision tree (DR) for the second one to achieve this goal. Moreover, we consider deterministic and stochastic scenarios with white Gaussian noise (WGN) for attack strategy. Results demonstrate that our method outperforms a recently suggested scheme.
A Demo of a Software Platform for Ubiquitous Big Data Engineering, Visualization, and Analytics, via Reconfigurable Micro-Services, in Smart Factories. 2022 IEEE International Conference on Smart Computing (SMARTCOMP). :1–3.
.
2022. Intelligent, smart, Cloud, reconfigurable manufac-turing, and remote monitoring, all intersect in modern industry and mark the path toward more efficient, effective, and sustain-able factories. Many obstacles are found along the path, including legacy machineries and technologies, security issues, and software that is often hard, slow, and expensive to adapt to face unforeseen challenges and needs in this fast-changing ecosystem. Light-weight, portable, loosely coupled, easily monitored, variegated software components, supporting Edge, Fog and Cloud computing, that can be (re)created, (re)configured and operated from remote through Web requests in a matter of milliseconds, and that rely on libraries of ready-to-use tasks also extendable from remote through sub-second Web requests, constitute a fertile technological ground on top of which fourth-generation industries can be built. In this demo it will be shown how starting from a completely virgin Docker Engine, it is possible to build, configure, destroy, rebuild, operate, exclusively from remote, exclusively via API calls, computation networks that are capable to (i) raise alerts based on configured thresholds or trained ML models, (ii) transform Big Data streams, (iii) produce and persist Big Datasets on the Cloud, (iv) train and persist ML models on the Cloud, (v) use trained models for one-shot or stream predictions, (vi) produce tabular visualizations, line plots, pie charts, histograms, at real-time, from Big Data streams. Also, it will be shown how easily such computation networks can be upgraded with new functionalities at real-time, from remote, via API calls.
ISSN: 2693-8340
Design and Implementation of a Software Disaster Recovery Service for Cloud Computing-Based Aerospace Ground Systems. 2022 11th International Conference on Communications, Circuits and Systems (ICCCAS). :220—225.
.
2022. The data centers of cloud computing-based aerospace ground systems and the businesses running on them are extremely vulnerable to man-made disasters, emergencies, and other disasters, which means security is seriously threatened. Thus, cloud centers need to provide effective disaster recovery services for software and data. However, the disaster recovery methods for current cloud centers of aerospace ground systems have long been in arrears, and the disaster tolerance and anti-destruction capability are weak. Aiming at the above problems, in this paper we design a disaster recovery service for aerospace ground systems based on cloud computing. On account of the software warehouse, this service adopts the main standby mode to achieve the backup, local disaster recovery, and remote disaster recovery of software and data. As a result, this service can timely response to the disasters, ensure the continuous running of businesses, and improve the disaster tolerance and anti-destruction capability of aerospace ground systems. Extensive simulation experiments validate the effectiveness of the disaster recovery service proposed in this paper.
Design and Implementation of System for URL Signature Construction and Impact Assessment. 2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI). :95–100.
.
2022. The attacker’s server plays an important role in sending attack orders and receiving stolen information, particularly in the more recent cyberattacks. Under these circumstances, it is important to use network-based signatures to block malicious communications in order to reduce the damage. However, in addition to blocking malicious communications, signatures are also required not to block benign communications during normal business operations. Therefore, the generation of signatures requires a high level of understanding of the business, and highly depends on individual skills. In addition, in actual operation, it is necessary to test whether the generated signatures do not interfere with benign communications, which results in high operational costs. In this paper, we propose SIGMA, a system that automatically generates signatures to block malicious communication without interfering with benign communication and then automatically evaluates the impact of the signatures. SIGMA automatically extracts the common parts of malware communication destinations by clustering them and generates multiple candidate signatures. After that, SIGMA automatically calculates the impact on normal communication based on business logs, etc., and presents the final signature to the analyst, which has the highest blockability of malicious communication and non-blockability of normal communication. Our objectives with this system are to reduce the human factor in generating the signatures, reduce the cost of the impact evaluation, and support the decision of whether to apply the signatures. In the preliminary evaluation, we showed that SIGMA can automatically generate a set of signatures that detect 100% of suspicious URLs with an over-detection rate of just 0.87%, using the results of 14,238 malware analyses and actual business logs. This result suggests that the cost for generation of signatures and the evaluation of their impact on business operations can be suppressed, which used to be a time-consuming and human-intensive process.
Design of a Nonintrusive Current Sensor with Large Dynamic Range Based on Tunneling Magnetoresistive Devices. 2022 IEEE 5th International Electrical and Energy Conference (CIEEC). :3405—3409.
.
2022. Current sensors are widely used in power grid for power metering, automation and power equipment monitoring. Since the tradeoff between the sensitivity and the measurement range needs to be made to design a current sensor, it is difficult to deploy one sensor to measure both the small-magnitude and the large-magnitude current. In this research, we design a surface-mount current sensor by using the tunneling magneto-resistance (TMR) devices and show that the tradeoff between the sensitivity and the detection range can be broken. Two TMR devices of different sensitivity degrees were integrated into one current sensor module, and a signal processing algorithm was implemented to fusion the outputs of the two TMR devices. Then, a platform was setup to test the performance of the surface-mount current sensor. The results showed that the designed current sensor could measure the current from 2 mA to 100 A with an approximate 93 dB dynamic range. Besides, the nonintrusive feature of the surface-mount current sensor could make it convenient to be deployed on-site.
Design of Cyber-Physical Security Testbed for Multi-Stage Manufacturing System. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :1978—1983.
.
2022. As cyber-physical systems are becoming more wide spread, it is imperative to secure these systems. In the real world these systems produce large amounts of data. However, it is generally impractical to test security techniques on operational cyber-physical systems. Thus, there exists a need to have realistic systems and data for testing security of cyber-physical systems [1]. This is often done in testbeds and cyber ranges. Most cyber ranges and testbeds focus on traditional network systems and few incorporate cyber-physical components. When they do, the cyber-physical components are often simulated. In the systems that incorporate cyber-physical components, generally only the network data is analyzed for attack detection and diagnosis. While there is some study in using physical signals to detect and diagnosis attacks, this data is not incorporated into current testbeds and cyber ranges. This study surveys currents testbeds and cyber ranges and demonstrates a prototype testbed that includes cyber-physical components and sensor data in addition to traditional cyber data monitoring.
Design of Information System Security Evaluation Management System based on Artificial Intelligence. 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI). :967—970.
.
2022. In today's society, with the continuous development of artificial intelligence, artificial intelligence technology plays an increasingly important role in social and economic development, and hass become the fastest growing, most widely used and most influential high-tech in the world today one. However, at the same time, information technology has also brought threats to network security to the entire network world, which makes information systems also face huge and severe challenges, which will affect the stability and development of society to a certain extent. Therefore, comprehensive analysis and research on information system security is a very necessary and urgent task. Through the security assessment of the information system, we can discover the key hidden dangers and loopholes that are hidden in the information source or potentially threaten user data and confidential files, so as to effectively prevent these risks from occurring and provide effective solutions; at the same time To a certain extent, prevent virus invasion, malicious program attacks and network hackers' intrusive behaviors. This article adopts the experimental analysis method to explore how to apply the most practical, advanced and efficient artificial intelligence theory to the information system security assessment management, so as to further realize the optimal design of the information system security assessment management system, which will protect our country the information security has very important meaning and practical value. According to the research results, the function of the experimental test system is complete and available, and the security is good, which can meet the requirements of multi-user operation for security evaluation of the information system.
Designing a Framework of an Integrated Network and Security Operation Center: A Convergence Approach. 2022 IEEE 7th International conference for Convergence in Technology (I2CT). :1—4.
.
2022. Cyber-security incidents have grown significantly in modern networks, far more diverse and highly destructive and disruptive. According to the 2021 Cyber Security Statistics Report [1], cybercrime is up 600% during this COVID pandemic, the top attacks are but are not confined to (a) sophisticated phishing emails, (b) account and DNS hijacking, (c) targeted attacks using stealth and air gap malware, (d) distributed denial of services (DDoS), (e) SQL injection. Additionally, 95% of cyber-security breaches result from human error, according to Cybint Report [2]. The average time to identify a breach is 207 days as per Ponemon Institute and IBM, 2022 Cost of Data Breach Report [3]. However, various preventative controls based on cyber-security risk estimation and awareness results decrease most incidents, but not all. Further, any incident detection delay and passive actions to cyber-security incidents put the organizational assets at risk. Therefore, the cyber-security incident management system has become a vital part of the organizational strategy. Thus, the authors propose a framework to converge a "Security Operation Center" (SOC) and a "Network Operations Center" (NOC) in an "Integrated Network Security Operation Center" (INSOC), to overcome cyber-threat detection and mitigation inefficiencies in the near-real-time scenario. We applied the People, Process, Technology, Governance and Compliance (PPTGC) approach to develop the INSOC conceptual framework, according to the requirements we formulated for its operation [4], [5]. The article briefly describes the INSOC conceptual framework and its usefulness, including the central area of the PPTGC approach while designing the framework.
Detect Phishing Website by Fuzzy Multi-Criteria Decision Making. 2022 1st International Conference on AI in Cybersecurity (ICAIC). :1–8.
.
2022. Phishing activity is undertaken by the hackers to compromise the computer networks and financial system. A compromised computer system or network provides data and or processing resources to the world of cybercrime. Cybercrimes are projected to cost the world \$6 trillion by 2021, in this context phishing is expected to continue being a growing challenge. Statistics around phishing growth over the last decade support this theory as phishing numbers enjoy almost an exponential growth over the period. Recent reports on the complexity of the phishing show that the fight against phishing URL as a means of building more resilient cyberspace is an evolving challenge. Compounding the problem is the lack of cyber security expertise to handle the expected rise in incidents. Previous research have proposed different methods including neural network, data mining technique, heuristic-based phishing detection technique, machine learning to detect phishing websites. However, recently phishers have started to use more sophisticated techniques to attack the internet users such as VoIP phishing, spear phishing etc. For these modern methods, the traditional ways of phishing detection provide low accuracy. Hence, the requirement arises for the application and development of modern tools and techniques to use as a countermeasure against such phishing attacks. Keeping in view the nature of recent phishing attacks, it is imperative to develop a state-of-the art anti-phishing tool which should be able to predict the phishing attacks before the occurrence of actual phishing incidents. We have designed such a tool that will work efficiently to detect the phishing websites so that a user can understand easily the risk of using of his personal and financial data.
Detecting Malware Using Graph Embedding and DNN. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :28—31.
.
2022. Nowadays, the popularity of intelligent terminals makes malwares more and more serious. Among the many features of application, the call graph can accurately express the behavior of the application. The rapid development of graph neural network in recent years provides a new solution for the malicious analysis of application using call graphs as features. However, there are still problems such as low accuracy. This paper established a large-scale data set containing more than 40,000 samples and selected the class call graph, which was extracted from the application, as the feature and used the graph embedding combined with the deep neural network to detect the malware. The experimental results show that the accuracy of the detection model proposed in this paper is 97.7%; the precision is 96.6%; the recall is 96.8%; the F1-score is 96.4%, which is better than the existing detection model based on Markov chain and graph embedding detection model.
Detection and Incentive: A Tampering Detection Mechanism for Object Detection in Edge Computing. 2022 41st International Symposium on Reliable Distributed Systems (SRDS). :166—177.
.
2022. The object detection tasks based on edge computing have received great attention. A common concern hasn't been addressed is that edge may be unreliable and uploads the incorrect data to cloud. Existing works focus on the consistency of the transmitted data by edge. However, in cases when the inputs and the outputs are inherently different, the authenticity of data processing has not been addressed. In this paper, we first simply model the tampering detection. Then, bases on the feature insertion and game theory, the tampering detection and economic incentives mechanism (TDEI) is proposed. In tampering detection, terminal negotiates a set of features with cloud and inserts them into the raw data, after the cloud determines whether the results from edge contain the relevant information. The honesty incentives employs game theory to instill the distrust among different edges, preventing them from colluding and thwarting the tampering detection. Meanwhile, the subjectivity of nodes is also considered. TDEI distributes the tampering detection to all edges and realizes the self-detection of edge results. Experimental results based on the KITTI dataset, show that the accuracy of detection is 95% and 80%, when terminal's additional overhead is smaller than 30% for image and 20% for video, respectively. The interference ratios of TDEI to raw data are about 16% for video and 0% for image, respectively. Finally, we discuss the advantage and scalability of TDEI.
Detection and prediction of DDoS cyber attacks using spline functions. 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :710–713.
.
2022. The issues of development and legal regulation of cybersecurity in Ukraine are considered. The expediency of further improvement of the regulatory framework, its implementation and development of cybersecurity systems is substantiated. Further development of the theoretical base of cyber defense using spline functions is proposed. The characteristics of network traffic are considered from the point of view of detecting DDoS cyber attacks (SYN-Flood, ICMP-Flood, UDP-Flood) and predicting DDoS cyber-attacks using spline functions. The spline extrapolation method makes it possible to predict DDoS cyber attacks with great accuracy.
Detection and Prevention of UDP Reflection Amplification Attack in WSN Using Cumulative Sum Algorithm. 2022 IEEE International Conference on Data Science and Information System (ICDSIS). :1–5.
.
2022. Wireless sensor networks are used in many areas such as war field surveillance, monitoring of patient, controlling traffic, environmental and building surveillance. Wireless technology, on the other hand, brings a load of new threats with it. Because WSNs communicate across radio frequencies, they are more susceptible to interference than wired networks. The authors of this research look at the goals of WSNs in terms of security as well as DDOS attacks. The majority of techniques are available for detecting DDOS attacks in WSNs. These alternatives, on the other hand, stop the assault after it has begun, resulting in data loss and wasting limited sensor node resources. The study finishes with a new method for detecting the UDP Reflection Amplification Attack in WSN, as well as instructions on how to use it and how to deal with the case.
Detection of Botnets in IoT Networks using Graph Theory and Machine Learning. 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI). :590—597.
.
2022. The Internet of things (IoT) is proving to be a boon in granting internet access to regularly used objects and devices. Sensors, programs, and other innovations interact and trade information with different gadgets and frameworks over the web. Even in modern times, IoT gadgets experience the ill effects of primary security threats, which expose them to many dangers and malware, one among them being IoT botnets. Botnets carry out attacks by serving as a vector and this has become one of the significant dangers on the Internet. These vectors act against associations and carry out cybercrimes. They are used to produce spam, DDOS attacks, click frauds, and steal confidential data. IoT gadgets bring various challenges unlike the common malware on PCs and Android devices as IoT gadgets have heterogeneous processor architecture. Numerous researches use static or dynamic analysis for detection and classification of botnets on IoT gadgets. Most researchers haven't addressed the multi-architecture issue and they use a lot of computing resources for analyzing. Therefore, this approach attempts to classify botnets in IoT by using PSI-Graphs which effectively addresses the problem of encryption in IoT botnet detection, tackles the multi-architecture problem, and reduces computation time. It proposes another methodology for describing and recognizing botnets utilizing graph-based Machine Learning techniques and Exploratory Data Analysis to analyze the data and identify how separable the data is to recognize bots at an earlier stage so that IoT devices can be prevented from being attacked.
Detection of relevant digital evidence in the forensic timelines. 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1–7.
.
2022. Security incident handling and response are essen-tial parts of every organization's information and cyber security. Security incident handling consists of several phases, among which digital forensic analysis has an irreplaceable place. Due to particular digital evidence being recorded at a specific time, timelines play an essential role in analyzing this digital evidence. One of the vital tasks of the digital forensic investigator is finding relevant records in this timeline. This operation is performed manually in most cases. This paper focuses on the possibilities of automatically identifying digital evidence pertinent to the case and proposes a model that identifies this digital evidence. For this purpose, we focus on Windows operating system and the NTFS file system and use outlier detection (Local Outlier Factor method). Collected digital evidence is preprocessed, transformed to binary values, and aggregated by file system inodes and names. Subsequently, we identify digital records (file inodes, file names) relevant to the case. This paper analyzes the combinations of attributes, aggregation functions, local outlier factor parameters, and their impact on the resulting selection of relevant file inodes and file names.
Detection of web attacks using machine learning based URL classification techniques. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1–13.
.
2022. For a long time, online attacks were regarded to pose a severe threat to web - based applications, websites, and clients. It can bypass authentication methods, steal sensitive information from datasets and clients, and also gain ultimate authority of servers. A variety of ways for safeguarding online apps have been developed and used to deal the website risks. Based on the studies about the intersection of cybersecurity and machine learning, countermeasures for identifying typical web assaults have recently been presented (ML). In order to establish a better understanding on this essential topic, it is necessary to study ML methodologies, feature extraction techniques, evaluate datasets, and performance metrics utilised in a systematic manner. In this paper, we go through web security flaws like SQLi, XSS, malicious URLs, phishing attacks, path traversal, and CMDi in detail. We also go through the existing security methods for detecting these threats using machine learning approaches for URL classification. Finally, we discuss potential research opportunities for ML and DL-based techniques in this category, based on a thorough examination of existing solutions in the literature.
Deterministic Ziv-Zakai Bound for Compressive Time Delay Estimation. 2022 IEEE Radar Conference (RadarConf22). :1–5.
.
2022. Compressive radar receiver has attracted a lot of research interest due to its capability to keep balance between sub-Nyquist sampling and high resolution. In evaluating the performance of compressive time delay estimator, Cramer-Rao bound (CRB) has been commonly utilized for lower bounding the mean square error (MSE). However, behaving as a local bound, CRB is not tight in the a priori performance region. In this paper, we introduce the Ziv-Zakai bound (ZZB) methodology into compressive sensing framework, and derive a deterministic ZZB for compressive time delay estimators as a function of the compressive sensing kernel. By effectively incorporating the a priori information of the unknown time delay, the derived ZZB performs much tighter than CRB especially in the a priori performance region. Simulation results demonstrate that the derived ZZB outperforms the Bayesian CRB over a wide range of signal-to-noise ratio, where different types of a priori distribution of time delay are considered.
Development and Implementation of a Holistic Flexibility Market Architecture. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.
.
2022. The demand for increasing flexibility use in power systems is stressed by the changing grid utilization. Making use of largely untapped flexibility potential is possible through novel flexibility markets. Different approaches for these markets are being developed and vary considering their handling of transaction schemes and relation of participating entities. This paper delivers the conceptual development of a holistic system architecture for the realization of an interregional flexibility market, which targets a market based congestion management in the transmission and distribution system through trading between system operators and flexibility providers. The framework combines a market mechanism with the required supplements like appropriate control algorithms for emergency situations, cyber-physical system monitoring and cyber-security assessment. The resulting methods are being implemented and verified in a remote-power-hardware-in-the-loop setup coupling a real world low voltage grid with a geographically distant real time simulation using state of the art control system applications with an integration of the aforementioned architecture components.
Development of a Model for Managing the Openness of an Information System in the Context of Information Security Risks of Critical Information Infrastructure Object. 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :431—435.
.
2022. The problem of information security of critical information infrastructure objects in the conditions of openness is formulated. The concept of information infrastructure openness is analyzed. An approach to assessing the openness of an information system is presented. A set-theoretic model of information resources openness was developed. The formulation of the control problem over the degree of openness with restrictions on risk was carried out. An example of solving the problem of finding the coefficient of openness is presented.
Device Onboarding in Eclipse Arrowhead Using Power of Attorney Based Authorization. 2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :26–32.
.
2022. Large-scale onboarding of industrial cyber physical systems requires efficiency and security. In situations with the dynamic addition of devices (e.g., from subcontractors entering a workplace), automation of the onboarding process is desired. The Eclipse Arrowhead framework, which provides a platform for industrial automation, requires reliable, flexible, and secure device onboarding to local clouds. In this paper, we propose a device onboarding method in the Arrowhead framework where decentralized authorization is provided by Power of Attorney. The model allows users to subgrant power to trusted autonomous devices to act on their behalf. We present concepts, an implementation of the proposed system, and a use case for scalable onboarding where Powers of Attorney at two levels are used to allow a subcontractor to onboard its devices to an industrial site. We also present performance evaluation results.
ISSN: 2378-4873
Differential Privacy Techniques for Healthcare Data. 2022 International Conference on Intelligent Data Science Technologies and Applications (IDSTA). :95–100.
.
2022. This paper analyzes techniques to enable differential privacy by adding Laplace noise to healthcare data. First, as healthcare data contain natural constraints for data to take only integral values, we show that drawing only integral values does not provide differential privacy. In contrast, rounding randomly drawn values to the nearest integer provides differential privacy. Second, when a variable is constructed using two other variables, noise must be added to only one of them. Third, if the constructed variable is a fraction, then noise must be added to its constituent private variables, and not to the fraction directly. Fourth, the accuracy of analytics following noise addition increases with the privacy budget, ϵ, and the variance of the independent variable. Finally, the accuracy of analytics following noise addition increases disproportionately with an increase in the privacy budget when the variance of the independent variable is greater. Using actual healthcare data, we provide evidence supporting the two predictions on the accuracy of data analytics. Crucially, to enable accuracy of data analytics with differential privacy, we derive a relationship to extract the slope parameter in the original dataset using the slope parameter in the noisy dataset.
Digital Certificate Authentication with Three-Level Cryptography (SHA-256, DSA, 3DES). 2022 International Seminar on Application for Technology of Information and Communication (iSemantic). :343–350.
.
2022. The rapid development of technology, makes it easier for everyone to exchange information and knowledge. Exchange information via the internet is threatened with security. Security issues, especially the issue of the confidentiality of information content and its authenticity, are vital things that must protect. Peculiarly for agencies that often hold activities that provide certificates in digital form to participants. Digital certificates are digital files conventionally used as proof of participation or a sign of appreciation owned by someone. We need a security technology for certificates as a source of information known as cryptography. This study aims to validate and authenticate digital certificates with digital signatures using SHA-256, DSA, and 3DES. The use of the SHA-256 hash function is in line with the DSA method and the implementation of 3DES which uses 2 private keys so that the security of digital certificate files can be increased. The pixel changes that appear in the MSE calculation have the lowest value of 7.4510 and the highest value of 165.0561 when the file is manipulated, it answers the security of the proposed method is maintained because the only valid file is the original file.