Biblio

Found 1302 results

Filters: First Letter Of Last Name is V  [Clear All Filters]
2018-05-17
2018-05-28
2023-04-14
Van Goethem, Tom, Joosen, Wouter.  Submitted.  Towards Improving the Deprecation Process of Web Features through Progressive Web Security. 2022 IEEE Security and Privacy Workshops (SPW).
To keep up with the continuous modernization of web applications and to facilitate their development, a large number of new features are introduced to the web platform every year. Although new web features typically undergo a security review, issues affecting the privacy and security of users could still surface at a later stage, requiring the deprecation and removal of affected APIs. Furthermore, as the web evolves, so do the expectations in terms of security and privacy, and legacy features might need to be replaced with improved alternatives. Currently, this process of deprecating and removing features is an ad-hoc effort that is largely uncoordinated between the different browser vendors. This causes a discrepancy in terms of compatibility and could eventually lead to the deterrence of the removal of an API, prolonging potential security threats. In this paper we propose a progressive security mechanism that aims to facilitate and standardize the deprecation and removal of features that pose a risk to users’ security, and the introduction of features that aim to provide additional security guarantees.
2023-07-28
Dubchak, Lesia, Vasylkiv, Nadiia, Turchenko, Iryna, Komar, Myroslav, Nadvynychna, Tetiana, Volner, Rudolf.  2022.  Access Distribution to the Evaluation System Based on Fuzzy Logic. 2022 12th International Conference on Advanced Computer Information Technologies (ACIT). :564—567.
In order to control users’ access to the information system, it is necessary to develop a security system that can work in real time and easily reconfigure. This problem can be solved using a fuzzy logic. In this paper the authors propose a fuzzy distribution system for access to the student assessment system, which takes into account the level of user access, identifier and the risk of attack during the request. This approach allows process fuzzy or incomplete information about the user and implement a sufficient level of confidential information protection.
2023-01-06
Chandrashekhar, RV, Visumathi, J, Anandaraj, A. PeterSoosai.  2022.  Advanced Lightweight Encryption Algorithm for Android (IoT) Devices. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1—5.
Security and Controls with Data privacy in Internet of Things (IoT) devices is not only a present and future technology that is projected to connect a multitude of devices, but it is also a critical survival factor for IoT to thrive. As the quantity of communications increases, massive amounts of data are expected to be generated, posing a threat to both physical device and data security. In the Internet of Things architecture, small and low-powered devices are widespread. Due to their complexity, traditional encryption methods and algorithms are computationally expensive, requiring numerous rounds to encrypt and decode, squandering the limited energy available on devices. A simpler cryptographic method, on the other hand, may compromise the intended confidentiality and integrity. This study examines two lightweight encryption algorithms for Android devices: AES and RSA. On the other hand, the traditional AES approach generates preset encryption keys that the sender and receiver share. As a result, the key may be obtained quickly. In this paper, we present an improved AES approach for generating dynamic keys.
2023-08-03
Thai, Ho Huy, Hieu, Nguyen Duc, Van Tho, Nguyen, Hoang, Hien Do, Duy, Phan The, Pham, Van-Hau.  2022.  Adversarial AutoEncoder and Generative Adversarial Networks for Semi-Supervised Learning Intrusion Detection System. 2022 RIVF International Conference on Computing and Communication Technologies (RIVF). :584–589.
As one of the defensive solutions against cyberattacks, an Intrusion Detection System (IDS) plays an important role in observing the network state and alerting suspicious actions that can break down the system. There are many attempts of adopting Machine Learning (ML) in IDS to achieve high performance in intrusion detection. However, all of them necessitate a large amount of labeled data. In addition, labeling attack data is a time-consuming and expensive human-labor operation, it makes existing ML methods difficult to deploy in a new system or yields lower results due to a lack of labels on pre-trained data. To address these issues, we propose a semi-supervised IDS model that leverages Generative Adversarial Networks (GANs) and Adversarial AutoEncoder (AAE), called a semi-supervised adversarial autoencoder (SAAE). Our SAAE experimental results on two public datasets for benchmarking ML-based IDS, including NF-CSE-CIC-IDS2018 and NF-UNSW-NB15, demonstrate the effectiveness of AAE and GAN in case of using only a small number of labeled data. In particular, our approach outperforms other ML methods with the highest detection rates in spite of the scarcity of labeled data for model training, even with only 1% labeled data.
ISSN: 2162-786X
2023-06-30
Bhuyan, Hemanta Kumar, Arun Sai, T., Charan, M., Vignesh Chowdary, K., Brahma, Biswajit.  2022.  Analysis of classification based predicted disease using machine learning and medical things model. 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). :1–6.
{Health diseases have been issued seriously harmful in human life due to different dehydrated food and disturbance of working environment in the organization. Precise prediction and diagnosis of disease become a more serious and challenging task for primary deterrence, recognition, and treatment. Thus, based on the above challenges, we proposed the Medical Things (MT) and machine learning models to solve the healthcare problems with appropriate services in disease supervising, forecast, and diagnosis. We developed a prediction framework with machine learning approaches to get different categories of classification for predicted disease. The framework is designed by the fuzzy model with a decision tree to lessen the data complexity. We considered heart disease for experiments and experimental evaluation determined the prediction for categories of classification. The number of decision trees (M) with samples (MS), leaf node (ML), and learning rate (I) is determined as MS=20
2023-06-09
L, Gururaj H, C, Soundarya B, V, Janhavi, H, Lakshmi, MJ, Prassan Kumar.  2022.  Analysis of Cyber Security Attacks using Kali Linux. 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). :1—6.
In the prevailing situation, the sports like economic, industrial, cultural, social, and governmental activities are carried out in the online world. Today's international is particularly dependent on the wireless era and protective these statistics from cyber-assaults is a hard hassle. The reason for cyber-assaults is to damage thieve the credentials. In a few other cases, cyber-attacks ought to have a navy or political functions. The damages are PC viruses, facts break, DDS, and exceptional attack vectors. To this surrender, various companies use diverse answers to prevent harm because of cyberattacks. Cyber safety follows actual-time data at the modern-day-day IT data. So, far, numerous techniques have proposed with the resource of researchers around the area to prevent cyber-attacks or lessen the harm due to them. The cause of this has a look at is to survey and comprehensively evaluate the usual advances supplied around cyber safety and to analyse the traumatic situations, weaknesses, and strengths of the proposed techniques. Different sorts of attacks are taken into consideration in element. In addition, evaluation of various cyber-attacks had been finished through the platform called Kali Linux. It is predicted that the complete assessment has a have a study furnished for college students, teachers, IT, and cyber safety researchers might be beneficial.
2023-08-24
Veeraiah, Vivek, Kumar, K Ranjit, Lalitha Kumari, P., Ahamad, Shahanawaj, Bansal, Rohit, Gupta, Ankur.  2022.  Application of Biometric System to Enhance the Security in Virtual World. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :719–723.
Virtual worlds was becoming increasingly popular in a variety of fields, including education, business, space exploration, and video games. Establishing the security of virtual worlds was becoming more critical as they become more widely used. Virtual users were identified using a behavioral biometric system. Improve the system's ability to identify objects by fusing scores from multiple sources. Identification was based on a review of user interactions in virtual environments and a comparison with previous recordings in the database. For behavioral biometric systems like the one described, it appears that score-level biometric fusion was a promising tool for improving system performance. As virtual worlds become more immersive, more people will want to participate in them, and more people will want to be able to interact with each other. Each region of the Meta-verse was given a glimpse of the current state of affairs and the trends to come. As hardware performance and institutional and public interest continue to improve, the Meta-verse's development is hampered by limitations like computational method limits and a lack of realized collaboration between virtual world stakeholders and developers alike. A major goal of the proposed research was to verify the accuracy of the biometric system to enhance the security in virtual world. In this study, the precision of the proposed work was compared to that of previous work.
2023-08-18
Varkey, Mariam, John, Jacob, S., Umadevi K..  2022.  Automated Anomaly Detection Tool for Industrial Control System. 2022 IEEE Conference on Dependable and Secure Computing (DSC). :1—6.
Industrial Control Systems (ICS) are not secure by design–with recent developments requiring them to connect to the Internet, they tend to be highly vulnerable. Additionally, attacks on critical infrastructures such as power grids and nuclear plants can cause significant damage and loss of lives. Since such attacks tend to generate anomalies in the systems, an efficient way of attack detection is to monitor the systems and identify anomalies in real-time. An automated anomaly detection tool is introduced in this paper. Additionally, the functioning of the systems is viewed as Finite State Automata. Specific sensor measurements are used to determine permissible transitions, and statistical measures such as the Interquartile Range are used to determine acceptable boundaries for the remaining sensor measurements provided by the system. Deviations from the boundaries or permissible transitions are considered as anomalies. An additional feature is the provision of a finite state automata diagram that provides the operational constraints of a system, given a set of regulated input. This tool showed a high anomaly detection rate when tested with three types of ICS. The concepts are also benchmarked against a state-of-the-art anomaly detection algorithm called Isolation Forest, and the results are provided.
2023-01-13
Kiratsata, Harsh J., Raval, Deep P., Viras, Payal K., Lalwani, Punit, Patel, Himanshu, D., Panchal S..  2022.  Behaviour Analysis of Open-Source Firewalls Under Security Crisis. 2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET). :105—109.
Nowadays, in this COVID era, work from home is quietly more preferred than work from the office. Due to this, the need for a firewall has been increased day by day. Every organization uses the firewall to secure their network and create VPN servers to allow their employees to work from home. Due to this, the security of the firewall plays a crucial role. In this paper, we have compared the two most popular open-source firewalls named pfSense and OPNSense. We have examined the security they provide by default without any other attachment. To do this, we performed four different attacks on the firewalls and compared the results. As a result, we have observed that both provide the same security still pfSense has a slight edge when an attacker tries to perform a Brute force attack over OPNSense.
2023-02-13
Jattke, Patrick, van der Veen, Victor, Frigo, Pietro, Gunter, Stijn, Razavi, Kaveh.  2022.  BLACKSMITH: Scalable Rowhammering in the Frequency Domain. 2022 IEEE Symposium on Security and Privacy (SP). :716—734.
We present the new class of non-uniform Rowhammer access patterns that bypass undocumented, proprietary in-DRAM Target Row Refresh (TRR) while operating in a production setting. We show that these patterns trigger bit flips on all 40 DDR4 DRAM devices in our test pool. We make a key observation that all published Rowhammer access patterns always hammer “aggressor” rows uniformly. While uniform accesses maximize the number of aggressor activations, we find that in-DRAM TRR exploits this behavior to catch aggressor rows and refresh neighboring “victims” before they fail. There is no reason, however, to limit Rowhammer attacks to uniform access patterns: smaller technology nodes make underlying DRAM technologies more vulnerable, and significantly fewer accesses are nowadays required to trigger bit flips, making it interesting to investigate less predictable access patterns. The search space for non-uniform access patterns, however, is tremendous. We design experiments to explore this space with respect to the deployed mitigations, highlighting the importance of the order, regularity, and intensity of accessing aggressor rows in non-uniform access patterns. We show how randomizing parameters in the frequency domain captures these aspects and use this insight in the design of Blacksmith, a scalable Rowhammer fuzzer that generates access patterns that hammer aggressor rows with different phases, frequencies, and amplitudes. Blacksmith finds complex patterns that trigger Rowhammer bit flips on all 40 of our recently purchased DDR4 DIMMs, \$2.6 \textbackslashtimes\$ more than state of the art, and generating on average \$87 \textbackslashtimes\$ more bit flips. We also demonstrate the effectiveness of these patterns on Low Power DDR4X devices. Our extensive analysis using Blacksmith further provides new insights on the properties of currently deployed TRR mitigations. We conclude that after almost a decade of research and deployed in-DRAM mitigations, we are perhaps in a worse situation than when Rowhammer was first discovered.
2023-09-08
Yadav, Ranjeet, Ritambhara, Vaigandla, Karthik Kumar, Ghantasala, G S Pradeep, Singh, Rajesh, Gangodkar, Durgaprasad.  2022.  The Block Chain Technology to protect Data Access using Intelligent Contracts Mechanism Security Framework for 5G Networks. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I). :108–112.
The introduction of the study primarily emphasises the significance of utilising block chain technologies with the possibility of privacy and security benefits from the 5G Network. One may state that the study’s primary focus is on all the advantages of adopting block chain technology to safeguard everyone’s access to crucial data by utilizing intelligent contracts to enhance the 5G network security model on information security operations.Our literature evaluation for the study focuses primarily on the advantages advantages of utilizing block chain technology advance data security and privacy, as well as their development and growth. The whole study paper has covered both the benefits and drawbacks of employing the block chain technology. The literature study part of this research article has, on the contrary hand, also studied several approaches and tactics for using the blockchain technology facilities. To fully understand the circumstances in this specific case, a poll was undertaken. It was possible for the researchers to get some real-world data in this specific situation by conducting a survey with 51 randomly selected participants.
2023-01-05
Bansal, Lakshya, Chaurasia, Shefali, Sabharwal, Munish, Vij, Mohit.  2022.  Blockchain Integration with end-to-end traceability in the Food Supply Chain. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1152—1156.
Food supply chain is a complex but necessary food production arrangement needed by the global community to maintain sustainability and food security. For the past few years, entities being a part of the food processing system have usually taken food supply chain for granted, they forget that just one disturbance in the chain can lead to poisoning, scarcity, or increased prices. This continually affects the vulnerable among society, including impoverished individuals and small restaurants/grocers. The food supply chain has been expanded across the globe involving many more entities, making the supply chain longer and more problematic making the traditional logistics pattern unable to match the expectations of customers. Food supply chains involve many challenges like lack of traceability and communication, supply of fraudulent food products and failure in monitoring warehouses. Therefore there is a need for a system that ensures authentic information about the product, a reliable trading mechanism. In this paper, we have proposed a comprehensive solution to make the supply chain consumer centric by using Blockchain. Blockchain technology in the food industry applies in a mindful and holistic manner to verify and certify the quality of food products by presenting authentic information about the products from the initial stages. The problem formulation, simulation and performance analysis are also discussed in this research work.
2023-07-11
Yarlagadda, Venu, Garikapati, Annapurna Karthika, Gadupudi, Lakshminarayana, Kapoor, Rashmi, Veeresham, K..  2022.  Comparative Analysis of STATCOM and SVC on Power System Dynamic Response and Stability Margins with time and frequency responses using Modelling. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1—8.
To ensure dynamic and transient angle and load stability in order to maintain the power system security is a major task of the power Engineer. FACTS Controllers are most effective devices to ensure system security by enhancing the stability margins with reactive power support all over the power system network. The major shunt compensation devices of FACTS are SVC and STATCOM. This article dispenses the modelling and simulation of both the shunt devices viz. Oneis the Static Synchronous Compensator (STATCOM) and the other is Static Var Compensator (SVC). The small signal models of these devices have been derived from the first principles and obtained the transfer function models of weak and strong power systems. The weak power system has the Short Circuit Ratio (SCR) is about less than 3 and that of the strong power system has the SCR of more than 5. The performance of the both weak and strong power systems has been evaluated with time and frequency responses. The dynamic response is obtained with the exact models for both weak and strong systems, subsequently the root locus plots as well as bode plots have been obtained with MATLAB Programs and evaluated the performance of these devices and comparison is made. The Stability margins of both the systems with SVC and STATCOM have been obtained from the bode plots. The dynamic behaviour of the both kinds of power systems have been assessed with time responses of SVC and STATCOM models. All of these results viz. dynamic response, root locus and bode plots proves the superiority of the STATCOM over SVC with indices, viz. peak overshoot, settling time, gain margin and phase margins. The dynamic, steady state performance indices obtained from time response and bode plots proves the superior performance of STATCOM.
2023-05-30
Saranya, K., Valarmathi, Dr. A..  2022.  A Comparative Study on Machine Learning based Cross Layer Security in Internet of Things (IoT). 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :267—273.
The Internet of Things is a developing technology that converts physical objects into virtual objects connected to the internet using wired and wireless network architecture. Use of cross-layer techniques in the internet of things is primarily driven by the high heterogeneity of hardware and software capabilities. Although traditional layered architecture has been effective for a while, cross-layer protocols have the potential to greatly improve a number of wireless network characteristics, including bandwidth and energy usage. Also, one of the main concerns with the internet of things is security, and machine learning (ML) techniques are thought to be the most cuttingedge and viable approach. This has led to a plethora of new research directions for tackling IoT's growing security issues. In the proposed study, a number of cross-layer approaches based on machine learning techniques that have been offered in the past to address issues and challenges brought on by the variety of IoT are in-depth examined. Additionally, the main issues are mentioned and analyzed, including those related to scalability, interoperability, security, privacy, mobility, and energy utilization.
2023-02-24
Abdelzaher, Tarek, Bastian, Nathaniel D., Jha, Susmit, Kaplan, Lance, Srivastava, Mani, Veeravalli, Venugopal V..  2022.  Context-aware Collaborative Neuro-Symbolic Inference in IoBTs. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :1053—1058.
IoBTs must feature collaborative, context-aware, multi-modal fusion for real-time, robust decision-making in adversarial environments. The integration of machine learning (ML) models into IoBTs has been successful at solving these problems at a small scale (e.g., AiTR), but state-of-the-art ML models grow exponentially with increasing temporal and spatial scale of modeled phenomena, and can thus become brittle, untrustworthy, and vulnerable when interpreting large-scale tactical edge data. To address this challenge, we need to develop principles and methodologies for uncertainty-quantified neuro-symbolic ML, where learning and inference exploit symbolic knowledge and reasoning, in addition to, multi-modal and multi-vantage sensor data. The approach features integrated neuro-symbolic inference, where symbolic context is used by deep learning, and deep learning models provide atomic concepts for symbolic reasoning. The incorporation of high-level symbolic reasoning improves data efficiency during training and makes inference more robust, interpretable, and resource-efficient. In this paper, we identify the key challenges in developing context-aware collaborative neuro-symbolic inference in IoBTs and review some recent progress in addressing these gaps.
2023-01-05
Rojas, Aarón Joseph Serrano, Valencia, Erick Fabrizzio Paniura, Armas-Aguirre, Jimmy, Molina, Juan Manuel Madrid.  2022.  Cybersecurity maturity model for the protection and privacy of personal health data. 2022 IEEE 2nd International Conference on Advanced Learning Technologies on Education & Research (ICALTER). :1—4.
This paper proposes a cybersecurity maturity model to assess the capabilities of medical organizations to identify their level of maturity, prioritizing privacy and personal data protection. There are problems such as data breaches, the lack of security measures in health information, and the poor capacity of organizations to handle cybersecurity threats that generate concern in the health sector as they seek to mitigate risks in cyberspace. The proposal, based upon C2M2 (Cybersecurity Capability Maturity Model), incorporates practices and controls which allow organizations to identify security gaps generated through cyberattacks on sensitive health patient data. This model seeks to integrate the best practices related to privacy and protection of personal data in the Peruvian legal framework through the Administrative Directive No. 294-MINSA and the personal data protection Act No. 29733. The model consists of 3 evaluation phases. 1. Assessment planning; 2. Execution of the evaluation; 3. Implementation of improvements. The model was validated and tested in a public sector medical organization in Lima, Peru. The preliminary results showed that the organization is at Level 1 with 14% of compliance with established controls, 34% in risk, threat and vulnerability management practices and 19% in supply chain management. These the 3 highest percentages of the 10 evaluated domains.
2023-03-31
Vineela, A., Kasiviswanath, N., Bindu, C. Shoba.  2022.  Data Integrity Auditing Scheme for Preserving Security in Cloud based Big Data. 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS). :609–613.
Cloud computing has become an integral part of medical big data. The cloud has the capability to store the large data volumes has attracted more attention. The integrity and privacy of patient data are some of the issues that cloud-based medical big data should be addressed. This research work introduces data integrity auditing scheme for cloud-based medical big data. This will help minimize the risk of unauthorized access to the data. Multiple copies of the data are stored to ensure that it can be recovered quickly in case of damage. This scheme can also be used to enable doctors to easily track the changes in patients' conditions through a data block. The simulation results proved the effectiveness of the proposed scheme.
ISSN: 2768-5330
2023-07-19
Voulgaris, Konstantinos, Kiourtis, Athanasios, Karamolegkos, Panagiotis, Karabetian, Andreas, Poulakis, Yannis, Mavrogiorgou, Argyro, Kyriazis, Dimosthenis.  2022.  Data Processing Tools for Graph Data Modelling Big Data Analytics. 2022 13th International Congress on Advanced Applied Informatics Winter (IIAI-AAI-Winter). :208—212.
Any Big Data scenario eventually reaches scalability concerns for several factors, often storage or computing power related. Modern solutions have been proven to be effective in multiple domains and have automated many aspects of the Big Data pipeline. In this paper, we aim to present a solution for deploying event-based automated data processing tools for low code environments that aim to minimize the need for user input and can effectively handle common data processing jobs, as an alternative to distributed solutions which require language specific libraries and code. Our architecture uses a combination of a network exposed service with a cluster of “Data Workers” that handle data processing jobs effectively without requiring manual input from the user. This system proves to be effective at handling most data processing scenarios and allows for easy expandability by following simple patterns when declaring any additional jobs.
2023-06-22
Ho, Samson, Reddy, Achyut, Venkatesan, Sridhar, Izmailov, Rauf, Chadha, Ritu, Oprea, Alina.  2022.  Data Sanitization Approach to Mitigate Clean-Label Attacks Against Malware Detection Systems. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :993–998.
Machine learning (ML) models are increasingly being used in the development of Malware Detection Systems. Existing research in this area primarily focuses on developing new architectures and feature representation techniques to improve the accuracy of the model. However, recent studies have shown that existing state-of-the art techniques are vulnerable to adversarial machine learning (AML) attacks. Among those, data poisoning attacks have been identified as a top concern for ML practitioners. A recent study on clean-label poisoning attacks in which an adversary intentionally crafts training samples in order for the model to learn a backdoor watermark was shown to degrade the performance of state-of-the-art classifiers. Defenses against such poisoning attacks have been largely under-explored. We investigate a recently proposed clean-label poisoning attack and leverage an ensemble-based Nested Training technique to remove most of the poisoned samples from a poisoned training dataset. Our technique leverages the relatively large sensitivity of poisoned samples to feature noise that disproportionately affects the accuracy of a backdoored model. In particular, we show that for two state-of-the art architectures trained on the EMBER dataset affected by the clean-label attack, the Nested Training approach improves the accuracy of backdoor malware samples from 3.42% to 93.2%. We also show that samples produced by the clean-label attack often successfully evade malware classification even when the classifier is not poisoned during training. However, even in such scenarios, our Nested Training technique can mitigate the effect of such clean-label-based evasion attacks by recovering the model's accuracy of malware detection from 3.57% to 93.2%.
ISSN: 2155-7586
2023-06-23
Vogel, Michael, Schuster, Franka, Kopp, Fabian Malte, König, Hartmut.  2022.  Data Volume Reduction for Deep Packet Inspection by Multi-layer Application Determination. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :44–49.
Attack detection in enterprise networks is increasingly faced with large data volumes, in part high data bursts, and heavily fluctuating data flows that often cause arbitrary discarding of data packets in overload situations which can be used by attackers to hide attack activities. Attack detection systems usually configure a comprehensive set of signatures for known vulnerabilities in different operating systems, protocols, and applications. Many of these signatures, however, are not relevant in each context, since certain vulnerabilities have already been eliminated, or the vulnerable applications or operating system versions, respectively, are not installed on the involved systems. In this paper, we present an approach for clustering data flows to assign them to dedicated analysis units that contain only signature sets relevant for the analysis of these flows. We discuss the performance of this clustering and show how it can be used in practice to improve the efficiency of an analysis pipeline.
2023-07-19
Vekić, Marko, Isakov, Ivana, Rapaić, Milan, Grabić, Stevan, Todorović, Ivan, Porobić, Vlado.  2022.  Decentralized microgrid control "beyond droop". 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1—5.
Various approaches of microgrid operation have been proposed, albeit with noticeable issues such as power-sharing, control of frequency and voltage excursions, applicability on different grids, etc. This paper proposes a goal function-based, decentralized control that addresses the mentioned problems and secures the microgrid stability by constraining the frequency and node deviations across the grid while simultaneously supporting the desired active power exchange between prosumer nodes. The control algorithm is independent of network topology and enables arbitrary node connection, i.e. seamless microgrid expandability. To confirm the effectiveness of the proposed control strategy, simulation results are presented and discussed.
2023-08-23
Nalinipriya, G, Govarthini, V, Kayalvizhi, S., Christika, S, Vishvaja, J., Royal Amara, Kumar Raghuveer.  2022.  DefendR - An Advanced Security Model Using Mini Filter in Unix Multi-Operating System. 2022 8th International Conference on Smart Structures and Systems (ICSSS). :1—6.
DefendR is a Security operation used to block the access of the user to edit or overwrite the contents in our personal file that is stored in our system. This approach of applying a certain filter for the sensitive or sensitive data that are applicable exclusively in read-only mode. This is an improvisation of security for the personal data that restricts undo or redo related operations in the shared file. We use a mini-filter driver tool. Specifically, IRP (Incident Response Plan)-based I/O operations, as well as fast FSFilter callback activities, may additionally all be filtered with a mini-filter driver. A mini-filter can register a preoperation callback procedure, a postoperative Each of the I/O operations it filters is filtered by a callback procedure. By registering all necessary callback filtering methods in a filter manager, a mini-filter driver interfaces to the file system indirectly. When a mini-filter is loaded, the latter is a Windows file system filter driver that is active and connects to the file system stack.
2023-09-18
Pranav, Putsa Rama Krishna, Verma, Sachin, Shenoy, Sahana, Saravanan, S..  2022.  Detection of Botnets in IoT Networks using Graph Theory and Machine Learning. 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI). :590—597.
The Internet of things (IoT) is proving to be a boon in granting internet access to regularly used objects and devices. Sensors, programs, and other innovations interact and trade information with different gadgets and frameworks over the web. Even in modern times, IoT gadgets experience the ill effects of primary security threats, which expose them to many dangers and malware, one among them being IoT botnets. Botnets carry out attacks by serving as a vector and this has become one of the significant dangers on the Internet. These vectors act against associations and carry out cybercrimes. They are used to produce spam, DDOS attacks, click frauds, and steal confidential data. IoT gadgets bring various challenges unlike the common malware on PCs and Android devices as IoT gadgets have heterogeneous processor architecture. Numerous researches use static or dynamic analysis for detection and classification of botnets on IoT gadgets. Most researchers haven't addressed the multi-architecture issue and they use a lot of computing resources for analyzing. Therefore, this approach attempts to classify botnets in IoT by using PSI-Graphs which effectively addresses the problem of encryption in IoT botnet detection, tackles the multi-architecture problem, and reduces computation time. It proposes another methodology for describing and recognizing botnets utilizing graph-based Machine Learning techniques and Exploratory Data Analysis to analyze the data and identify how separable the data is to recognize bots at an earlier stage so that IoT devices can be prevented from being attacked.