Biblio

Found 1302 results

Filters: First Letter Of Last Name is V  [Clear All Filters]
2022-12-09
Gualandi, Gabriele, Maggio, Martina, Vittorio Papadopoulos, Alessandro.  2022.  Optimization-based attack against control systems with CUSUM-based anomaly detection. 2022 30th Mediterranean Conference on Control and Automation (MED). :896—901.
Security attacks on sensor data can deceive a control system and force the physical plant to reach an unwanted and potentially dangerous state. Therefore, attack detection mechanisms are employed in cyber-physical control systems to detect ongoing attacks, the most prominent one being a threshold-based anomaly detection method called CUSUM. Literature defines the maximum impact of stealth attacks as the maximum deviation in the plant’s state that an undetectable attack can introduce, and formulates it as an optimization problem. This paper proposes an optimization-based attack with different saturation models, and it investigates how the attack duration significantly affects the impact of the attack on the state of the plant. We show that more dangerous attacks can be discovered when allowing saturation of the control system actuators. The proposed approach is compared with the geometric attack, showing how longer attack durations can lead to a greater impact of the attack while keeping the attack stealthy.
2023-03-17
Vehabovic, Aldin, Ghani, Nasir, Bou-Harb, Elias, Crichigno, Jorge, Yayimli, Aysegül.  2022.  Ransomware Detection and Classification Strategies. 2022 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :316–324.
Ransomware uses encryption methods to make data inaccessible to legitimate users. To date a wide range of ransomware families have been developed and deployed, causing immense damage to governments, corporations, and private users. As these cyberthreats multiply, researchers have proposed a range of ransom ware detection and classification schemes. Most of these methods use advanced machine learning techniques to process and analyze real-world ransomware binaries and action sequences. Hence this paper presents a survey of this critical space and classifies existing solutions into several categories, i.e., including network-based, host-based, forensic characterization, and authorship attribution. Key facilities and tools for ransomware analysis are also presented along with open challenges.
2023-02-02
Vasal, Deepanshu.  2022.  Sequential decomposition of Stochastic Stackelberg games. 2022 American Control Conference (ACC). :1266–1271.
In this paper, we consider a discrete-time stochastic Stackelberg game where there is a defender (also called leader) who has to defend a target and an attacker (also called follower). The attacker has a private type that evolves as a controlled Markov process. The objective is to compute the stochastic Stackelberg equilibrium of the game where defender commits to a strategy. The attacker’s strategy is the best response to the defender strategy and defender’s strategy is optimum given the attacker plays the best response. In general, computing such equilibrium involves solving a fixed-point equation for the whole game. In this paper, we present an algorithm that computes such strategies by solving lower dimensional fixed-point equations for each time t. Based on this algorithm, we compute the Stackelberg equilibrium of a security example.
2023-02-03
Roobini, M.S., Srividhya, S.R., Sugnaya, Vennela, Kannekanti, Nikhila, Guntumadugu.  2022.  Detection of SQL Injection Attack Using Adaptive Deep Forest. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1–6.
Injection attack is one of the best 10 security dangers declared by OWASP. SQL infusion is one of the main types of attack. In light of their assorted and quick nature, SQL injection can detrimentally affect the line, prompting broken and public data on the site. Therefore, this article presents a profound woodland-based technique for recognizing complex SQL attacks. Research shows that the methodology we use resolves the issue of expanding and debasing the first condition of the woodland. We are currently presenting the AdaBoost profound timberland-based calculation, which utilizes a blunder level to refresh the heaviness of everything in the classification. At the end of the day, various loads are given during the studio as per the effect of the outcomes on various things. Our model can change the size of the tree quickly and take care of numerous issues to stay away from issues. The aftereffects of the review show that the proposed technique performs better compared to the old machine preparing strategy and progressed preparing technique.
2023-07-13
Senthilnayaki, B., Venkatalakshami, K., Dharanyadevi, P., G, Nivetha, Devi, A..  2022.  An Efficient Medical Image Encryption Using Magic Square and PSO. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1–5.
Encryption is essential for protecting sensitive data, especially images, against unauthorized access and exploitation. The goal of this work is to develop a more secure image encryption technique for image-based communication. The approach uses particle swarm optimization, chaotic map and magic square to offer an ideal encryption effect. This work introduces a novel encryption algorithm based on magic square. The image is first broken down into single-byte blocks, which are then replaced with the value of the magic square. The encrypted images are then utilized as particles and a starting assembly for the PSO optimization process. The correlation coefficient applied to neighboring pixels is used to define the ideal encrypted image as a fitness function. The results of the experiments reveal that the proposed approach can effectively encrypt images with various secret keys and has a decent encryption effect. As a result of the proposed work improves the public key method's security while simultaneously increasing memory economy.
2023-01-20
G, Emayashri, R, Harini, V, Abirami S, M, Benedict Tephila.  2022.  Electricity-Theft Detection in Smart Grids Using Wireless Sensor Networks. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:2033—2036.
Satisfying the growing demand for electricity is a huge challenge for electricity providers without a robust and good infrastructure. For effective electricity management, the infrastructure has to be strengthened from the generation stage to the transmission and distribution stages. In the current electrical infrastructure, the evolution of smart grids provides a significant solution to the problems that exist in the conventional system. Enhanced management visibility and better monitoring and control are achieved by the integration of wireless sensor network technology in communication systems. However, to implement these solutions in the existing grids, the infrastructural constraints impose a major challenge. Along with the choice of technology, it is also crucial to avoid exorbitant implementation costs. This paper presents a self-stabilizing hierarchical algorithm for the existing electrical network. Neighborhood Area Networks (NAN) and Home Area Networks (HAN) layers are used in the proposed architecture. The Home Node (HN), Simple Node (SN) and Cluster Head (CH) are the three types of nodes used in the model. Fraudulent users in the system are identified efficiently using the proposed model based on the observations made through simulation on OMNeT++ simulator.
2023-02-03
Kumar, Abhinav, Tourani, Reza, Vij, Mona, Srikanteswara, Srikathyayani.  2022.  SCLERA: A Framework for Privacy-Preserving MLaaS at the Pervasive Edge. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :175–180.
The increasing data generation rate and the proliferation of deep learning applications have led to the development of machine learning-as-a-service (MLaaS) platforms by major Cloud providers. The existing MLaaS platforms, however, fall short in protecting the clients’ private data. Recent distributed MLaaS architectures such as federated learning have also shown to be vulnerable against a range of privacy attacks. Such vulnerabilities motivated the development of privacy-preserving MLaaS techniques, which often use complex cryptographic prim-itives. Such approaches, however, demand abundant computing resources, which undermine the low-latency nature of evolving applications such as autonomous driving.To address these challenges, we propose SCLERA–an efficient MLaaS framework that utilizes trusted execution environment for secure execution of clients’ workloads. SCLERA features a set of optimization techniques to reduce the computational complexity of the offloaded services and achieve low-latency inference. We assessed SCLERA’s efficacy using image/video analytic use cases such as scene detection. Our results show that SCLERA achieves up to 23× speed-up when compared to the baseline secure model execution.
2023-02-17
Vélez, Tatiana Castro, Khatchadourian, Raffi, Bagherzadeh, Mehdi, Raja, Anita.  2022.  Challenges in Migrating Imperative Deep Learning Programs to Graph Execution: An Empirical Study. 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR). :469–481.
Efficiency is essential to support responsiveness w.r.t. ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code that supports symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development tends to produce DL code that is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, less error-prone imperative DL frameworks encouraging eager execution have emerged at the expense of run-time performance. While hybrid approaches aim for the “best of both worlds,” the challenges in applying them in the real world are largely unknown. We conduct a data-driven analysis of challenges-and resultant bugs-involved in writing reliable yet performant imperative DL code by studying 250 open-source projects, consisting of 19.7 MLOC, along with 470 and 446 manually examined code patches and bug reports, respectively. The results indicate that hybridization: (i) is prone to API misuse, (ii) can result in performance degradation-the opposite of its intention, and (iii) has limited application due to execution mode incompatibility. We put forth several recommendations, best practices, and anti-patterns for effectively hybridizing imperative DL code, potentially benefiting DL practitioners, API designers, tool developers, and educators.
ISSN: 2574-3864
2023-02-13
Murthy Pedapudi, Srinivasa, Vadlamani, Nagalakshmi.  2022.  A Comprehensive Network Security Management in Virtual Private Network Environment. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :1362—1367.
Virtual Private Networks (VPNs) have become a communication medium for accessing information, data exchange and flow of information. Many organizations require Intranet or VPN, for data access, access to servers from computers and sharing different types of data among their offices and users. A secure VPN environment is essential to the organizations to protect the information and their IT infrastructure and their assets. Every organization needs to protect their computer network environment from various malicious cyber threats. This paper presents a comprehensive network security management which includes significant strategies and protective measures during the management of a VPN in an organization. The paper also presents the procedures and necessary counter measures to preserve the security of VPN environment and also discussed few Identified Security Strategies and measures in VPN. It also briefs the Network Security and their Policies Management for implementation by covering security measures in firewall, visualized security profile, role of sandbox for securing network. In addition, a few identified security controls to strengthen the organizational security which are useful in designing a secure, efficient and scalable VPN environment, are also discussed.
2023-02-03
Sicari, Christian, Catalfamo, Alessio, Galletta, Antonino, Villari, Massimo.  2022.  A Distributed Peer to Peer Identity and Access Management for the Osmotic Computing. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :775–781.
Nowadays Osmotic Computing is emerging as one of the paradigms used to guarantee the Cloud Continuum, and this popularity is strictly related to the capacity to embrace inside it some hot topics like containers, microservices, orchestration and Function as a Service (FaaS). The Osmotic principle is quite simple, it aims to create a federated heterogeneous infrastructure, where an application's components can smoothly move following a concentration rule. In this work, we aim to solve two big constraints of Osmotic Computing related to the incapacity to manage dynamic access rules for accessing the applications inside the Osmotic Infrastructure and the incapacity to keep alive and secure the access to these applications even in presence of network disconnections. For overcoming these limits we designed and implemented a new Osmotic component, that acts as an eventually consistent distributed peer to peer access management system. This new component is used to keep a local Identity and Access Manager (IAM) that permits at any time to access the resource available in an Osmotic node and to update the access rules that allow or deny access to hosted applications. This component has been already integrated inside a Kubernetes based Osmotic Infrastructure and we presented two typical use cases where it can be exploited.
2022-12-09
Hussain, Karrar, Vanathi, D., Jose, Bibin K, Kavitha, S, Rane, Bhuvaneshwari Yogesh, Kaur, Harpreet, Sandhya, C..  2022.  Internet of Things- Cloud Security Automation Technology Based on Artificial Intelligence. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :42—47.
The development of industrial robots, as a carrier of artificial intelligence, has played an important role in promoting the popularisation of artificial intelligence super automation technology. The paper introduces the system structure, hardware structure, and software system of the mobile robot climber based on computer big data technology, based on this research background. At the same time, the paper focuses on the climber robot's mechanism compound method and obstacle avoidance control algorithm. Smart home computing focuses on “home” and brings together related peripheral industries to promote smart home services such as smart appliances, home entertainment, home health care, and security monitoring in order to create a safe, secure, energy-efficient, sustainable, and comfortable residential living environment. It's been twenty years. There is still no clear definition of “intelligence at home,” according to Philips Inc., a leading consumer electronics manufacturer, which once stated that intelligence should comprise sensing, connectedness, learning, adaption, and ease of interaction. S mart applications and services are still in the early stages of development, and not all of them can yet exhibit these five intelligent traits.
2022-12-20
von Zezschwitz, Emanuel, Chen, Serena, Stark, Emily.  2022.  "It builds trust with the customers" - Exploring User Perceptions of the Padlock Icon in Browser UI. 2022 IEEE Security and Privacy Workshops (SPW). :44–50.
We performed a large-scale online survey (n=1,880) to study the padlock icon, an established security indicator in web browsers that denotes connection security through HTTPS. In this paper, we evaluate users’ understanding of the padlock icon, and how removing or replacing it might influence their expectations and decisions. We found that the majority of respondents (89%) had misconceptions about the padlock’s meaning. While only a minority (23%-44%) referred to the padlock icon at all when asked to evaluate trustworthiness, these padlock-aware users reported that they would be deterred from a hypothetical shopping transaction when the padlock icon was absent. These users were reassured after seeing secondary UI surfaces (i.e., Chrome Page Info) where more verbose information about connection security was present.We conclude that the padlock icon, displayed by browsers in the address bar, is still misunderstood by many users. The padlock icon guarantees connection security, but is often perceived to indicate the general privacy, security, and trustworthiness of a website. We argue that communicating connection security precisely and clearly is likely to be more effective through secondary UI, where there is more surface area for content. We hope that this paper boosts the discussion about the benefits and drawbacks of showing passive security indicators in the browser UI.
ISSN: 2770-8411
2023-02-17
Ryndyuk, V. A., Varakin, Y. S., Pisarenko, E. A..  2022.  New Architecture of Transformer Networks for Generating Natural Dialogues. 2022 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF). :1–5.
The new architecture of transformer networks proposed in the work can be used to create an intelligent chat bot that can learn the process of communication and immediately model responses based on what has been said. The essence of the new mechanism is to divide the information flow into two branches containing the history of the dialogue with different levels of granularity. Such a mechanism makes it possible to build and develop the personality of a dialogue agent in the process of dialogue, that is, to accurately imitate the natural behavior of a person. This gives the interlocutor (client) the feeling of talking to a real person. In addition, making modifications to the structure of such a network makes it possible to identify a likely attack using social engineering methods. The results obtained after training the created system showed the fundamental possibility of using a neural network of a new architecture to generate responses close to natural ones. Possible options for using such neural network dialogue agents in various fields, and, in particular, in information security systems, are considered. Possible options for using such neural network dialogue agents in various fields, and, in particular, in information security systems, are considered. The new technology can be used in social engineering attack detection systems, which is a big problem at present. The novelty and prospects of the proposed architecture of the neural network also lies in the possibility of creating on its basis dialogue systems with a high level of biological plausibility.
ISSN: 2769-3538
2023-05-12
Carroll, E. G., Bracamontes, G., Piston, K., James, G. F., Provencher, C. M., Javedani, J., Stygar, W. A., Povilus, A. P., Vonhof, S., Yanagisawa, D. K. et al..  2022.  A New Pulsed Power System for Generating Up To 40t Magnetic Seeds Fields for Cryogenic Inertial Confinement Fusion Experiments on The National Ignition Facility. 2022 IEEE International Conference on Plasma Science (ICOPS). :1–1.
A new pulse power system is being developed with the goal of generating up to 40T seed magnetic fields for increasing the fusion yield of indirect drive inertial confinement fusion (ICF) experiments on the National Ignition Facility. This pulser is located outside of the target chamber and delivers a current pulse to the target through a coaxial cable bundle and custom flex-circuit strip-lines integrated into a cryogenic target positioner. At the target, the current passes through a multi-turn solenoid wrapped around the outside of a hohlraum and is insulated with Kapton coating. A 11.33 uF capacitor, charged up to 40 kV and switched by spark-gap, drives up to 40 kA of current before the coil disassembles. A custom Python design optimization code was written to maximize peak magnetic field strength while balancing competing pulser, load and facility constraints. Additionally, using an institutional multi-physics code, ALE3D, simulations that include coil dynamics such as temperature dependent resistance, coil forces and motion, and magnetic diffusion were conducted for detailed analysis of target coils. First experiments are reported as well as comparisons with current modelling efforts.
ISSN: 2576-7208
2023-06-22
Verma, Amandeep, Saha, Rahul.  2022.  Performance Analysis of DDoS Mitigation in Heterogeneous Environments. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :222–230.
Computer and Vehicular networks, both are prone to multiple information security breaches because of many reasons like lack of standard protocols for secure communication and authentication. Distributed Denial of Service (DDoS) is a threat that disrupts the communication in networks. Detection and prevention of DDoS attacks with accuracy is a necessity to make networks safe.In this paper, we have experimented two machine learning-based techniques one each for attack detection and attack prevention. These detection & prevention techniques are implemented in different environments including vehicular network environments and computer network environments. Three different datasets connected to heterogeneous environments are adopted for experimentation. The first dataset is the NSL-KDD dataset based on the traffic of the computer network. The second dataset is based on a simulation-based vehicular environment, and the third CIC-DDoS 2019 dataset is a computer network-based dataset. These datasets contain different number of attributes and instances of network traffic. For the purpose of attack detection AdaBoostM1 classification algorithm is used in WEKA and for attack prevention Logit Model is used in STATA. Results show that an accuracy of more than 99.9% is obtained from the simulation-based vehicular dataset. This is the highest accuracy rate among the three datasets and it is obtained within a very short period of time i.e., 0.5 seconds. In the same way, we use a Logit regression-based model to classify packets. This model shows an accuracy of 100%.
2023-01-20
Reijsbergen, Daniël, Maw, Aung, Venugopalan, Sarad, Yang, Dianshi, Tuan Anh Dinh, Tien, Zhou, Jianying.  2022.  Protecting the Integrity of IoT Sensor Data and Firmware With A Feather-Light Blockchain Infrastructure. 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–9.
Smart cities deploy large numbers of sensors and collect a tremendous amount of data from them. For example, Advanced Metering Infrastructures (AMIs), which consist of physical meters that collect usage data about public utilities such as power and water, are an important building block in a smart city. In a typical sensor network, the measurement devices are connected through a computer network, which exposes them to cyber attacks. Furthermore, the data is centrally managed at the operator’s servers, making it vulnerable to insider threats.Our goal is to protect the integrity of data collected by large-scale sensor networks and the firmware in measurement devices from cyber attacks and insider threats. To this end, we first develop a comprehensive threat model for attacks against data and firmware integrity, which can target any of the stakeholders in the operation of the sensor network. Next, we use our threat model to analyze existing defense mechanisms, including signature checks, remote firmware attestation, anomaly detection, and blockchain-based secure logs. However, the large size of the Trusted Computing Base and a lack of scalability limit the applicability of these existing mechanisms. We propose the Feather-Light Blockchain Infrastructure (FLBI) framework to address these limitations. Our framework leverages a two-layer architecture and cryptographic threshold signature chains to support large networks of low-capacity devices such as meters and data aggregators. We have fully implemented the FLBI’s end-to-end functionality on the Hyperledger Fabric and private Ethereum blockchain platforms. Our experiments show that the FLBI is able to support millions of end devices.
2023-02-17
Ruaro, Nicola, Pagani, Fabio, Ortolani, Stefano, Kruegel, Christopher, Vigna, Giovanni.  2022.  SYMBEXCEL: Automated Analysis and Understanding of Malicious Excel 4.0 Macros. 2022 IEEE Symposium on Security and Privacy (SP). :1066–1081.
Malicious software (malware) poses a significant threat to the security of our networks and users. In the ever-evolving malware landscape, Excel 4.0 Office macros (XL4) have recently become an important attack vector. These macros are often hidden within apparently legitimate documents and under several layers of obfuscation. As such, they are difficult to analyze using static analysis techniques. Moreover, the analysis in a dynamic analysis environment (a sandbox) is challenging because the macros execute correctly only under specific environmental conditions that are not always easy to create. This paper presents SYMBEXCEL, a novel solution that leverages symbolic execution to deobfuscate and analyze Excel 4.0 macros automatically. Our approach proceeds in three stages: (1) The malicious document is parsed and loaded in memory; (2) Our symbolic execution engine executes the XL4 formulas; and (3) Our Engine concretizes any symbolic values encountered during the symbolic exploration, therefore evaluating the execution of each macro under a broad range of (meaningful) environment configurations. SYMBEXCEL significantly outperforms existing deobfuscation tools, allowing us to reliably extract Indicators of Compromise (IoCs) and other critical forensics information. Our experiments demonstrate the effectiveness of our approach, especially in deobfuscating novel malicious documents that make heavy use of environment variables and are often not identified by commercial anti-virus software.
ISSN: 2375-1207
2022-12-20
Van Goethem, Tom, Joosen, Wouter.  2022.  Towards Improving the Deprecation Process of Web Features through Progressive Web Security. 2022 IEEE Security and Privacy Workshops (SPW). :20–30.
To keep up with the continuous modernization of web applications and to facilitate their development, a large number of new features are introduced to the web platform every year. Although new web features typically undergo a security review, issues affecting the privacy and security of users could still surface at a later stage, requiring the deprecation and removal of affected APIs. Furthermore, as the web evolves, so do the expectations in terms of security and privacy, and legacy features might need to be replaced with improved alternatives. Currently, this process of deprecating and removing features is an ad-hoc effort that is largely uncoordinated between the different browser vendors. This causes a discrepancy in terms of compatibility and could eventually lead to the deterrence of the removal of an API, prolonging potential security threats. In this paper we propose a progressive security mechanism that aims to facilitate and standardize the deprecation and removal of features that pose a risk to users’ security, and the introduction of features that aim to provide additional security guarantees.
ISSN: 2770-8411
2023-04-28
López, Hiram H., Matthews, Gretchen L., Valvo, Daniel.  2022.  Secure MatDot codes: a secure, distributed matrix multiplication scheme. 2022 IEEE Information Theory Workshop (ITW). :149–154.
This paper presents secure MatDot codes, a family of evaluation codes that support secure distributed matrix multiplication via a careful selection of evaluation points that exploit the properties of the dual code. We show that the secure MatDot codes provide security against the user by using locally recoverable codes. These new codes complement the recently studied discrete Fourier transform codes for distributed matrix multiplication schemes that also provide security against the user. There are scenarios where the associated costs are the same for both families and instances where the secure MatDot codes offer a lower cost. In addition, the secure MatDot code provides an alternative way to handle the matrix multiplication by identifying the fastest servers in advance. In this way, it can determine a product using fewer servers, specified in advance, than the MatDot codes which achieve the optimal recovery threshold for distributed matrix multiplication schemes.
2023-08-18
KK, Sabari, Shrivastava, Saurabh, V, Sangeetha..  2022.  Anomaly-based Intrusion Detection using GAN for Industrial Control Systems. 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1—6.
In recent years, cyber-attacks on modern industrial control systems (ICS) have become more common and it acts as a victim to various kind of attackers. The percentage of attacked ICS computers in the world in 2021 is 39.6%. To identify the anomaly in a large database system is a challenging task. Deep-learning model provides better solutions for handling the huge dataset with good accuracy. On the other hand, real time datasets are highly imbalanced with their sample proportions. In this research, GAN based model, a supervised learning method which generates new fake samples that is similar to real samples has been proposed. GAN based adversarial training would address the class imbalance problem in real time datasets. Adversarial samples are combined with legitimate samples and shuffled via proper proportion and given as input to the classifiers. The generated data samples along with the original ones are classified using various machine learning classifiers and their performances have been evaluated. Gradient boosting was found to classify with 98% accuracy when compared to other
2023-03-31
Bassit, Amina, Hahn, Florian, Veldhuis, Raymond, Peter, Andreas.  2022.  Multiplication-Free Biometric Recognition for Faster Processing under Encryption. 2022 IEEE International Joint Conference on Biometrics (IJCB). :1–9.

The cutting-edge biometric recognition systems extract distinctive feature vectors of biometric samples using deep neural networks to measure the amount of (dis-)similarity between two biometric samples. Studies have shown that personal information (e.g., health condition, ethnicity, etc.) can be inferred, and biometric samples can be reconstructed from those feature vectors, making their protection an urgent necessity. State-of-the-art biometrics protection solutions are based on homomorphic encryption (HE) to perform recognition over encrypted feature vectors, hiding the features and their processing while releasing the outcome only. However, this comes at the cost of those solutions' efficiency due to the inefficiency of HE-based solutions with a large number of multiplications; for (dis-)similarity measures, this number is proportional to the vector's dimension. In this paper, we tackle the HE performance bottleneck by freeing the two common (dis-)similarity measures, the cosine similarity and the squared Euclidean distance, from multiplications. Assuming normalized feature vectors, our approach pre-computes and organizes those (dis-)similarity measures into lookup tables. This transforms their computation into simple table-lookups and summation only. We study quantization parameters for the values in the lookup tables and evaluate performances on both synthetic and facial feature vectors for which we achieve a recognition performance identical to the non-tabularized baseline systems. We then assess their efficiency under HE and record runtimes between 28.95ms and 59.35ms for the three security levels, demonstrating their enhanced speed.

ISSN: 2474-9699

2023-07-20
Vadlamudi, Sailaja, Sam, Jenifer.  2022.  Unified Payments Interface – Preserving the Data Privacy of Consumers. 2022 International Conference on Cyber Resilience (ICCR). :1—6.
With the advent of ease of access to the internet and an increase in digital literacy among citizens, digitization of the banking sector has throttled. Countries are now aiming for a cashless society. The introduction of a Unified Payment Interface (UPI) by the National Payments Corporation of India (NPCI) in April 2016 is a game-changer for cashless models. UPI payment model is currently considered the world’s most advanced payment system, and we see many countries adopting this cashless payment mode. With the increase in its popularity, there arises the increased need to strengthen the security posture of the payment solution. In this work, we explore the privacy challenges in the existing data flow of UPI models and propose approaches to preserve the privacy of customers using the Unified Payments Interface.
2023-04-14
Yadav, Abhay Kumar, Vishwakarma, Virendra Prasad.  2022.  Adoptation of Blockchain of Things(BCOT): Oppurtunities & Challenges. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1–5.
IoT has been an efficient technology for interconnecting different physical objects with the internet. Several cyber-attacks have resulted in compromise in security. Blockchain distributed ledger provide immutability that can answer IoT security concerns. The paper aims at highlighting the challenges & problems currently associated with IoT implementation in real world and how these problems can be minimized by implementing Blockchain based solutions and smart contracts. Blockchain helps in creation of new highly robust IoT known as Blockchain of Things(BCoT). We will also examine presently employed projects working with integrating Blockchain & IoT together for creating desired solutions. We will also try to understand challenges & roadblocks preventing the further implementation of both technologies merger.
2023-01-06
Wolsing, Konrad, Saillard, Antoine, Bauer, Jan, Wagner, Eric, van Sloun, Christian, Fink, Ina Berenice, Schmidt, Mari, Wehrle, Klaus, Henze, Martin.  2022.  Network Attacks Against Marine Radar Systems: A Taxonomy, Simulation Environment, and Dataset. 2022 IEEE 47th Conference on Local Computer Networks (LCN). :114—122.
Shipboard marine radar systems are essential for safe navigation, helping seafarers perceive their surroundings as they provide bearing and range estimations, object detection, and tracking. Since onboard systems have become increasingly digitized, interconnecting distributed electronics, radars have been integrated into modern bridge systems. But digitization increases the risk of cyberattacks, especially as vessels cannot be considered air-gapped. Consequently, in-depth security is crucial. However, particularly radar systems are not sufficiently protected against harmful network-level adversaries. Therefore, we ask: Can seafarers believe their eyes? In this paper, we identify possible attacks on radar communication and discuss how these threaten safe vessel operation in an attack taxonomy. Furthermore, we develop a holistic simulation environment with radar, complementary nautical sensors, and prototypically implemented cyberattacks from our taxonomy. Finally, leveraging this environment, we create a comprehensive dataset (RadarPWN) with radar network attacks that provides a foundation for future security research to secure marine radar communication.
2023-01-13
Mandrakov, Egor S., Dudina, Diana A., Vasiliev, Vicror A., Aleksandrov, Mark N..  2022.  Risk Management Process in the Digital Environment. 2022 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). :108–111.
Currently, many organizations are moving to new digital management systems, which is accompanied not only by the introduction of new approaches based on the use of information technology, but also by a change in the organizational and management environment. Risk management is a process necessary to maintain the competitive advantage of an organization, but it can also become involved in the course of digitalization itself, which means that risk management also needs to change to meet modern conditions and ensure the effectiveness of the organization. This article discusses the risk management process in the digital environment. The main approach to the organization of this process is outlined, taking into account the use of information tools, together with the stages of this process, which directly affect the efficiency of the company. The risks that are specific to a digital organization are taken into account. Modern requirements for risk management for organizations are studied, ways of their implementation are outlined. The result is a risk management process that functions in a digital organization.