Biblio
Filters: First Letter Of Last Name is Z [Clear All Filters]
A Lightweight and Efficient Physical Layer Key Generation Mechanism for MANETs. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :1010–1015.
.
2020. Due to the reciprocity of wireless channels, the communication parties can directly extract the shared key from channel. This solution were verified through several schemes. However, in real situations, channel sampling of legitimate transceivers might be impacted by noises and other interferences, which makes the channel states obtained by initiator and responder might be obvious different. The efficiency and even availability of physical layer key generation are thus reduced. In this paper, we propose a lightweight and efficient physical layer key generation scheme, which extract shared secret keys from channel state information (CSI). To improve the key generation process, the discrete cosine transform (DCT) is employed to reduce differences of channel states of legitimate transceivers. Then, these outputs are quantified and encoded through multi-bit adaptive quantization(MAQ) quantizer and gray code to generate binary bit sequence, which can greatly reduce the bit error rate. Moreover, the low density parity check (LDPC) code and universal hashing functions are used to achieve information reconciliation and privacy amplifification. By adding preprocessing methods in the key generation process and using the rich information of CSI, the security of communications can be increased on the basis of improving the key generation rate. To evaluate this scheme, a number of experiments in various real environments are conducted. The experimental results show that the proposed scheme can effificiently generate shared secret keys for nodes and protect their communication.
A Locality Sensitive Hashing Based Approach for Federated Recommender System. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). :836–842.
.
2020. The recommender system is an important application in big data analytics because accurate recommendation items or high-valued suggestions can bring high profit to both commercial companies and customers. To make precise recommendations, a recommender system often needs large and fine-grained data for training. In the current big data era, data often exist in the form of isolated islands, and it is difficult to integrate the data scattered due to privacy security concerns. Moreover, privacy laws and regulations make it harder to share data. Therefore, designing a privacy-preserving recommender system is of paramount importance. Existing privacy-preserving recommender system models mainly adapt cryptography approaches to achieve privacy preservation. However, cryptography approaches have heavy overhead when performing encryption and decryption operations and they lack a good level of flexibility. In this paper, we propose a Locality Sensitive Hashing (LSH) based approach for federated recommender system. Our proposed efficient and scalable federated recommender system can make full use of multiple source data from different data owners while guaranteeing preservation of privacy of contributing parties. Extensive experiments on real-world benchmark datasets show that our approach can achieve both high time efficiency and accuracy under small privacy budgets.
A Location-aware Computation Offloading Policy for MEC-assisted Wireless Mesh Network. 2020 IEEE/CIC International Conference on Communications in China (ICCC Workshops). :53–58.
.
2020. Mobile edge computing (MEC), an emerging technology, has the characteristics of low latency, mobile energy savings, and context-awareness. As a type of access network, wireless mesh network (WMN) has gained wide attention due to its flexible network architecture, low deployment cost, and self-organization. The combination of MEC and WMN can solve the shortcomings of traditional wireless communication such as storage capacity, privacy, and security. In this paper, we propose a location-aware (LA) algorithm to cognize the location and a location-aware offloading policy (LAOP) algorithm considering the energy consumption and time delay. Simulation results show that the proposed LAOP algorithm can obtain a higher completion rate and lower average processing delay compared with the other two methods.
A Machine Learning-Based Approach for Automated Vulnerability Remediation Analysis. 2020 IEEE Conference on Communications and Network Security (CNS). :1–9.
.
2020. Security vulnerabilities in firmware/software pose an important threat ton power grid security, and thus electric utility companies should quickly decide how to remediate vulnerabilities after they are discovered. Making remediation decisions is a challenging task in the electric industry due to the many factors to consider, the balance to maintain between patching and service reliability, and the large amount of vulnerabilities to deal with. Unfortunately, remediation decisions are current manually made which take a long time. This increases security risks and incurs high cost of vulnerability management. In this paper, we propose a machine learning-based automation framework to automate remediation decision analysis for electric utilities. We apply it to an electric utility and conduct extensive experiments over two real operation datasets obtained from the utility. Results show the high effectiveness of the solution.
Machine-Learning Based TCP Security Action Prediction. 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :1329–1333.
.
2020. With the continuous growth of Internet technology and the increasingly broadening applications of The Internet, network security incidents as well as cyber-attacks are also showing a growing trend. Consequently, computer network security is becoming increasingly important. TCP firewall is a computer network security system, and it allows or denies the transmission of data according to specific rules for providing security for the computer network. Traditional firewalls rely on network administrators to set security rules for them, and network administrators sometimes need to choose to allow and deny packets to keep computer networks secure. However, due to the huge amount of data on the Internet, network administrators have a huge task. Therefore, it is particularly important to solve this problem by using the machine learning method of computer technology. This study aims to predict TCP security action based on the TCP transmission characteristics dataset provided by UCI machine learning repository by implementing machine learning models such as neural network, support vector machine (SVM), AdaBoost, and Logistic regression. Processes including evaluating various models and interpretability analysis. By utilizing the idea of ensemble-learning, the final result has an accuracy score of over 98%.
MiniDelay: Multi-Strategy Timing-Aware Layer Assignment for Advanced Technology Nodes. 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :586–591.
.
2020. Layer assignment, a major step in global routing of integrated circuits, is usually performed to assign segments of nets to multiple layers. Besides the traditional optimization goals such as overflow and via count, interconnect delay plays an important role in determining chip performance and has been attracting much attention in recent years. Accordingly, in this paper, we propose MiniDelay, a timing-aware layer assignment algorithm to minimize delay for advanced technology nodes, taking both wire congestion and coupling effect into account. MiniDelay consists of the following three key techniques: 1) a non-default-rule routing technique is adopted to reduce the delay of timing critical nets, 2) an effective congestion assessment method is proposed to optimize delay of nets and via count simultaneously, and 3) a net scalpel technique is proposed to further reduce the maximum delay of nets, so that the chip performance can be improved in a global manner. Experimental results on multiple benchmarks confirm that the proposed algorithm leads to lower delay and few vias, while achieving the best solution quality among the existing algorithms with the shortest runtime.
Modeling of Layered Supply Chain Network Considering Similarity. 2020 Chinese Control And Decision Conference (CCDC). :3894—3900.
.
2020. The supply chain network is a complex network with the risk of cascading failure. To study the cascading failure in it, an accurate supply chain network model needs to be established. In this paper, we construct a layered supply chain network model according to the types of companies in real supply chain networks. We first define the similarity between companies in the same layer by studying real-world scenarios in supply chain networks. Then, considering both the node degree and the similarity between nodes in the same layer, we propose preferential attachment probability formulas for the new nodes to join the exist network. Finally, the evolution steps of the model are summarized. We analyze the structural characteristics of the new model. The results show that the new model has scale-free property and small-world property, which conform to the structural characteristics of the known supply chain networks. Compared with the other network models, it is found that the new model can better describe the actual supply chain network.
Modular Security Analysis of OAuth 2.0 in the Three-Party Setting. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :276–293.
.
2020. OAuth 2.0 is one of the most widely used Internet protocols for authorization/single sign-on (SSO) and is also the foundation of the new SSO protocol OpenID Connect. Due to its complexity and its flexibility, it is difficult to comprehensively analyze the security of the OAuth 2.0 standard, yet it is critical to obtain practical security guarantees for OAuth 2.0. In this paper, we present the first computationally sound security analysis of OAuth 2.0. First, we introduce a new primitive, the three-party authenticated secret distribution (3P-ASD for short) protocol, which plays the role of issuing the secret and captures the token issue process of OAuth 2.0. As far as we know, this is the first attempt to formally abstract the authorization technology into a general primitive and then define its security. Then, we present a sufficiently rich three-party security model for OAuth protocols, covering all kinds of authorization flows, providing reasonably strong security guarantees and moreover capturing various web features. To confirm the soundness of our model, we also identify the known attacks against OAuth 2.0 in the model. Furthermore, we prove that two main modes of OAuth 2.0 can achieve our desired security by abstracting the token issue process into a 3P-ASD protocol. Our analysis is not only modular which can reflect the compositional nature of OAuth 2.0, but also fine-grained which can evaluate how the intermediate parameters affect the final security of OAuth 2.0.
Multi-Armed-Bandit-based Shilling Attack on Collaborative Filtering Recommender Systems. 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :347–355.
.
2020. Collaborative Filtering (CF) is a popular recommendation system that makes recommendations based on similar users' preferences. Though it is widely used, CF is prone to Shilling/Profile Injection attacks, where fake profiles are injected into the CF system to alter its outcome. Most of the existing shilling attacks do not work on online systems and cannot be efficiently implemented in real-world applications. In this paper, we introduce an efficient Multi-Armed-Bandit-based reinforcement learning method to practically execute online shilling attacks. Our method works by reducing the uncertainty associated with the item selection process and finds the most optimal items to enhance attack reach. Such practical online attacks open new avenues for research in building more robust recommender systems. We treat the recommender system as a black box, making our method effective irrespective of the type of CF used. Finally, we also experimentally test our approach against popular state-of-the-art shilling attacks.
Multi-Authority CP-ABE with Dynamical Revocation in Space-Air-Ground Integrated Network. 2020 International Conference on Space-Air-Ground Computing (SAGC). :76–81.
.
2020. Space-air-ground integrated network (SAGIN) is emerged as a versatile computing and traffic architecture in recent years. Though SAGIN brings many significant benefits for modern communication and computing services, there are many unprecedented challenges in SAGIN. The one critical challenge in SAGIN is the data security. In SAGIN, because the data will be stored in cleartext on cloud, the sensitive data may suffer from the illegal access by the unauthorized users even the untrusted cloud servers (CSs). Ciphertext-policy attribute-based encryption (CP-ABE), which is a type of attribute-based encryption (ABE), has been regarded as a promising solution to the critical challenge of the data security on cloud. But there are two main blemishes in traditional CP-ABE. The first one is that there is only one attribute authority (AA) in CP-ABE. If the single AA crashs down, the whole system will be shut down. The second one is that the AA cannot effectively manage the life cycle of the users’ private keys. If a user on longer has one attribute, the AA cannot revoke the user’s private key of this attribute. This means the user can still decrypt some ciphertexts using this invalid attribute. In this paper, to solve the two flaws mentioned above, we propose a multi-authority CP-ABE (MA-CP-ABE) scheme with the dynamical key revocation (DKR). Our key revocation supports both user revocation and attribute revocation. And the our revocation is time friendly. What’s more, by using our dynamically tag-based revocation algorithm, AAs can dynamically and directly re-enable or revoke the invalid attributes to users. Finally, by evaluating and implementing our scheme, we can observe that our scheme is more comprehensive and practical for cloud applications in SAGIN.
MuTrack: Multiparameter Based Indoor Passive Tracking System Using Commodity WiFi. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.
.
2020. Device-Free Localization and Tracking (DFLT) acts as a key component for the contactless awareness applications such as elderly care and home security. However, the random phase errors in WiFi signal and weak target echoes submerged in background clutter signals are mainly obstacles for current DFLT systems. In this paper, we propose the design and implementation of MuTrack, a multiparameter based DFLT system using commodity WiFi devices with a single link. Firstly, we select an antenna with maximum reliability index as the reference antenna for signal sanitization in which the conjugate operation removes the random phase errors. Secondly, we design a multi-dimensional parameters estimator and then refine path parameters by optimizing the complete data of path components. Finally, the Hungarian Kalman Filter based tracking method is proposed to derive accurate locations from low-resolution parameter estimates. We extensively validate the proposed system in typical indoor environment and these experimental results show that MuTrack can achieve high tracking accuracy with the mean error of 0.82 m using only a single link.
Neural Style Transfer for Picture with Gradient Gram Matrix Description. 2020 39th Chinese Control Conference (CCC). :7026–7030.
.
2020. Despite the high performance of neural style transfer on stylized pictures, we found that Gatys et al [1] algorithm cannot perfectly reconstruct texture style. Output stylized picture could emerge unsatisfied unexpected textures such like muddiness in local area and insufficient grain expression. Our method bases on original algorithm, adding the Gradient Gram description on style loss, aiming to strengthen texture expression and eliminate muddiness. To some extent our method lengthens the runtime, however, its output stylized pictures get higher performance on texture details, especially in the elimination of muddiness.
Noise Reduction Framework for Distantly Supervised Relation Extraction with Human in the Loop. 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC). :1–4.
.
2020. Distant supervision is a widely used data labeling method for relation extraction. While aligning knowledge base with the corpus, distant supervision leads to a mass of wrong labels which are defined as noise. The pattern-based denoising model has achieved great progress in selecting trustable sentences (instances). However, the writing of relation-specific patterns heavily relies on expert’s knowledge and is a high labor intensity work. To solve these problems, we propose a noise reduction framework, NOIR, to iteratively select trustable sentences with a little help of a human. Under the guidance of experts, the iterative process can avoid semantic drift. Besides, NOIR can help experts discover relation-specific tokens that are hard to think of. Experimental results on three real-world datasets show the effectiveness of the proposed method compared with state-of-the-art methods.
A Novel Ensemble Machine Learning Method to Detect Phishing Attack. 2020 IEEE 23rd International Multitopic Conference (INMIC). :1—5.
.
2020. Currently and particularly with remote working scenarios during COVID-19, phishing attack has become one of the most significant threats faced by internet users, organizations, and service providers. In a phishing attack, the attacker tries to steal client sensitive data (such as login, passwords, and credit card details) using spoofed emails and fake websites. Cybercriminals, hacktivists, and nation-state spy agencies have now got a fertilized ground to deploy their latest innovative phishing attacks. Timely detection of phishing attacks has become most crucial than ever. Machine learning algorithms can be used to accurately detect phishing attacks before a user is harmed. This paper presents a novel ensemble model to detect phishing attacks on the website. We select three machine learning classifiers: Artificial Neural Network (ANN), K-Nearest Neighbors (KNN), and Decision Tree (C4.5) to use in an ensemble method with Random Forest Classifier (RFC). This ensemble method effectively detects website phishing attacks with better accuracy than existing studies. Experimental results demonstrate that the ensemble of KNN and RFC detects phishing attacks with 97.33% accuracy.
Numerical Study of Acoustic Propagation Characteristics in the Multi-scale Seafloor Random Media. 2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP). :135–138.
.
2020. There is some uncertainty as to the applicability or accuracy of current theories for wave propagation in sediments. Numerical modelling of acoustic data has long been recognized to be a powerful method of understanding of complicated wave propagation and interaction. In this paper, we used the coupled two-dimensional PSM-BEM program to simulate the process of acoustic wave propagation in the seafloor with distributed multi-scale random media. The effects of fluid flow between the pores and the grains with multi-scale distribution were considered. The results show that the coupled PSM-BEM program can be directly applied to both high and low frequency seafloor acoustics. A given porous frame with the pore space saturated with fluid can greatly increase the magnitude of acoustic anisotropy. acoustic wave velocity dispersion and attenuation are significant over a frequency range which spans at least two orders of magnitude.
Open Source IoT-Based SCADA System for Remote Oil Facilities Using Node-RED and Arduino Microcontrollers. 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0571—0575.
.
2020. An open source and low-cost Supervisory Control and Data Acquisition System based on Node-RED and Arduino microcontrollers is presented in this paper. The system is designed for monitoring, supervision, and remotely controlling motors and sensors deployed for oil and gas facilities. The Internet of Things (IoT) based SCADA system consists of a host computer on which a server is deployed using the Node-RED programming tool and two terminal units connected to it: Arduino Uno and Arduino Mega. The Arduino Uno collects and communicates the data acquired from the temperature, flowrate, and water level sensors to the Node-Red on the computer through the serial port. It also uses a local liquid crystal display (LCD) to display the temperature. Node-RED on the computer retrieves the data from the voltage, current, rotary, accelerometer, and distance sensors through the Arduino Mega. Also, a web-based graphical user interface (GUI) is created using Node-RED and hosted on the local server for parsing the collected data. Finally, an HTTP basic access authentication is implemented using Nginx to control the clients' access from the Internet to the local server and to enhance its security and reliability.
Optimal Secure Two-Layer IoT Network Design. IEEE Transactions on Control of Network Systems. 7:398–409.
.
2020. With the remarkable growth of the Internet and communication technologies over the past few decades, Internet of Things (IoTs) is enabling the ubiquitous connectivity of heterogeneous physical devices with software, sensors, and actuators. IoT networks are naturally two layers with the cloud and cellular networks coexisting with the underlaid device-to-device communications. The connectivity of IoTs plays an important role in information dissemination for mission-critical and civilian applications. However, IoT communication networks are vulnerable to cyber attacks including the denial-of-service and jamming attacks, resulting in link removals in the IoT network. In this paper, we develop a heterogeneous IoT network design framework in which a network designer can add links to provide additional communication paths between two nodes or secure links against attacks by investing resources. By anticipating the strategic cyber attacks, we characterize the optimal design of the secure IoT network by first providing a lower bound on the number of links a secure network requires for a given budget of protected links, and then developing a method to construct networks that satisfy the heterogeneous network design specifications. Therefore, each layer of the designed heterogeneous IoT network is resistant to a predefined level of malicious attacks with minimum resources. Finally, we provide case studies on the Internet of Battlefield Things to corroborate and illustrate our obtained results.
Ori: A Greybox Fuzzer for SOME/IP Protocols in Automotive Ethernet. 2020 27th Asia-Pacific Software Engineering Conference (APSEC). :495—499.
.
2020. With the emergence of smart automotive devices, the data communication between these devices gains increasing importance. SOME/IP is a light-weight protocol to facilitate inter- process/device communication, which supports both procedural calls and event notifications. Because of its simplicity and capability, SOME/IP is getting adopted by more and more automotive devices. Subsequently, the security of SOME/IP applications becomes crucial. However, previous security testing techniques cannot fit the scenario of vulnerability detection SOME/IP applications due to miscellaneous challenges such as the difficulty of server-side testing programs in parallel, etc. By addressing these challenges, we propose Ori - a greybox fuzzer for SOME/IP applications, which features two key innovations: the attach fuzzing mode and structural mutation. The attach fuzzing mode enables Ori to test server programs efficiently, and the structural mutation allows Ori to generate valid SOME/IP packets to reach deep paths of the target program effectively. Our evaluation shows that Ori can detect vulnerabilities in SOME/IP applications effectively and efficiently.
Outsourcing Attributed-Based Ranked Searchable Encryption With Revocation for Cloud Storage. IEEE Access. 8:104344–104356.
.
2020. With the rapid growth of the cloud computing and strengthening of security requirements, encrypted cloud services are of importance and benefit. For the huge ciphertext data stored in the cloud, many secure searchable methods based on cryptography with keywords are introduced. In all the methods, attribute-based searchable encryption is considered as the truthful and efficient method since it supports the flexible access policy. However, the attribute-based system suffers from two defects when applied in the cloud storage. One of them is that the huge data in the cloud makes the users process all the relevant files related to the certain keyword. For the other side, the users and users' attributes inevitably change frequently. Therefore, attribute revocation is also an important problem in the system. To overcome these drawbacks, an attribute-based ranked searchable encryption scheme with revocation is proposed. We rank the ciphertext documents according to the TF×IDF principle, and then only return the relevant top-k files. Besides the decryption sever, an encryption sever is also introduced. And a large number of computations are outsourced to the encryption server and decryption server, which reduces the computing overhead of the client. In addition, the proposed scheme uses a real-time revocation method to achieve attribute revocation and delegates most of the update tasks to the cloud, which also reduces the calculation overhead of the user side. The performance evaluations show the scheme is feasible and more efficient than the available ones.
PCHA: A Fast Packet Classification Algorithm For IPv6 Based On Hash And AVL Tree. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :397–404.
.
2020. As the core infrastructure of cloud data operation, exchange and storage, data centerneeds to ensure its security and reliability, which are the important prerequisites for the development of cloud computing. Due to various illegal accesses, attacks, viruses and other security threats, it is necessary to protect the boundary of cloud data center through security gateway. Since the traffic growing up to gigabyte level, the secure gateway must ensure high transmission efficiency and different network services to support the cloud services. In addition, data center is gradually evolving from IPv4 to IPv6 due to excessive consumption of IP addresses. Packet classification algorithm, which can divide packets into different specific streams, is very important for QoS, real-time data stream application and firewall. Therefore, it is necessary to design a high performance IPv6 packet classification algorithm suitable for security gateway.AsIPv6 has a128-bitIP address and a different packet structure compared with IPv4, the traditional IPv4 packet classification algorithm is not suitable properly for IPv6 situations. This paper proposes a fast packet classification algorithm for IPv6 - PCHA (packet classification based on hash andAdelson-Velsky-Landis Tree). It adopts the three flow classification fields of source IPaddress(SA), destination IPaddress(DA) and flow label(FL) in the IPv6 packet defined by RFC3697 to implement fast three-tuple matching of IPv6 packet. It is through hash matching of variable length IPv6 address and tree matching of shorter flow label. Analysis and testing show that the algorithm has a time complexity close to O(1) in the acceptable range of space complexity, which meets the requirements of fast classification of IPv6 packetsand can adapt well to the changes in the size of rule sets, supporting fast preprocessing of rule sets. Our algorithm supports the storage of 500,000 3-tuple rules on the gateway device and can maintain 75% of the performance of throughput for small packets of 78 bytes.
pcSVF: An Evaluation of Side-Channel Vulnerability of Port Contention. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1813–1819.
.
2020. The threats from side-channel attacks to modern processors has become a serious problem, especially under the enhancement of the microarchitecture characteristics with multicore and resource sharing. Therefore, the research and measurement of the vulnerability of the side-channel attack of the system is of great significance for computer designers. Most of the current evaluation methods proposed by researchers are only for typical cache side-channel attacks. In this paper, we propose a method to measure systems' vulnerability to side-channel attacks caused by port contention called pcSVF. We collected the traces of the victim and attacker and computed the correlation coefficient between them, thus we can measure the vulnerability of the system against side-channel attack. Then we analyzed the effectiveness of the method through the results under different system defense schemes.
A Peer-to-Peer Market Algorithm for a Blockchain Platform. 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.
.
2020. In an era of technological revolution in which everything becomes smarter and connected, the blockchain can introduce a new model for energy transactions able to grant more simplicity, security and transparency for end-users. The blockchain technology is characterized by a distributed architecture without a trusted and centralized authority, and, therefore, it appears as the perfect solutions for managing exchanges between peers. In this paper, a market algorithm that can be easily transferred to a smart contract for maximizing the match between produced and consumed energy in a micro-grid is presented. The algorithm supports energy transactions between peers (both producers and consumers) and could be one of the main executables implemented using a blockchain platform. The case study presented in this paper shows how the end-users through the blockchain could select among the possible energy transactions those more suitable to offer specific ancillary services to the grid operator without involving the grid operator itself or a third-party aggregator.
Photonic Compressive Sampling of Sparse Broadband RF Signals using a Multimode Fiber. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). :1–3.
.
2020. We propose a photonic compressive sampling scheme based on multimode fiber for radio spectrum sensing, which shows high accuracy and stability, and low complexity and cost. Pulse overlapping is utilized for a fast detection. © 2020 The Author(s).
Physical-Layer Security with Finite Blocklength over Slow Fading Channels. 2020 International Conference on Computing, Networking and Communications (ICNC). :314–319.
.
2020. This paper studies physical-layer security over slow fading channels, considering the impact of finite-blocklength secrecy coding. A comprehensive analysis and optimization framework is established to investigate the secrecy throughput (ST) of a legitimate user pair coexisting with an eavesdropper. Specifically, we devise both adaptive and non-adaptive optimization schemes to maximize the ST, where we derive optimal parameters including the transmission policy, blocklength, and code rates based on the instantaneous and statistical channel state information of the legitimate pair, respectively. Various important insights are provided. In particular, 1) increasing blocklength improves both reliability and secrecy with our transmission policy; 2) ST monotonically increases with blocklength; 3) ST initially increases and then decreases with secrecy rate, and there exists a critical secrecy rate that maximizes the ST. Numerical results are presented to verify theoretical findings.
Prediction of Optimal Power Allocation for Enhancing Security-Reliability Tradeoff with the Application of Artificial Neural Networks. 2020 2nd International Conference on Advances in Computer Technology, Information Science and Communications (CTISC). :40–45.
.
2020. In this paper, we propose a power allocation scheme in order to improve both secure and reliable performance in the wireless two-hop threshold-selection decode-and-forward (DF) relaying networks, which is so crucial to set a threshold value related the signal-to-noise ratio (SNR) of the source signal at relay nodes for perfect decoding. We adapt the maximal-ratio combining (MRC) receiving SNR from the direct and relaying paths both at the destination and at the eavesdropper. Particularly worth mentioning is that the closed expression form of outage probability and intercept probability is driven, which can quantify the security and reliability, respectively. We also make endeavors to utilize a metric to tradeoff the security and the reliability (SRT) and find out the relevance between them in the balanced case. But beyond that, in the pursuit of tradeoff performance, power allocation tends to depend on the threshold value. In other words, it provides a new method optimizing total power to the source and the relay by the threshold value. The results are obtained from analysis, confirmed by simulation, and predicted by artificial neural networks (ANNs), which is trained with back propagation (BP) algorithm, and thus the feasibility of the proposed method is verified.