Biblio

Found 2636 results

Filters: First Letter Of Last Name is Z  [Clear All Filters]
2021-05-05
Đuranec, A., Gruičić, S., Žagar, M..  2020.  Forensic analysis of Windows 10 Sandbox. 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). :1224—1229.

With each Windows operating system Microsoft introduces new features to its users. Newly added features present a challenge to digital forensics examiners as they are not analyzed or tested enough. One of the latest features, introduced in Windows 10 version 1909 is Windows Sandbox; a lightweight, temporary, environment for running untrusted applications. Because of the temporary nature of the Sandbox and insufficient documentation, digital forensic examiners are facing new challenges when examining this newly added feature which can be used to hide different illegal activities. Throughout this paper, the focus will be on analyzing different Windows artifacts and event logs, with various tools, left behind as a result of the user interaction with the Sandbox feature on a clear virtual environment. Additionally, the setup of testing environment will be explained, the results of testing and interpretation of the findings will be presented, as well as open-source tools used for the analysis.

2021-08-03
Jin, Ya, Chen, Yin Fang, Xu, Chang Da, Qi, Yi Chao, Chen, Shao Kang, Chen, Wei, Zhu, Ning Hua.  2020.  A hybrid optical frequency-hopping scheme based on OAM multiplexing for secure optical communications. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). :1—3.
In this paper, a hybrid optical frequency hopping system based on OAM multiplexing is proposed, which is mainly applied to the security of free space optical communication. In the proposed scheme, the segmented users' data goes through two stages of hopping successively to realize data hiding. And the security performance is also analyzed in this paper. © 2020 The Author(s).
2021-06-30
Zhao, Yi, Jia, Xian, An, Dou, Yang, Qingyu.  2020.  LSTM-Based False Data Injection Attack Detection in Smart Grids. 2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :638—644.
As a typical cyber-physical system, smart grid has attracted growing attention due to the safe and efficient operation. The false data injection attack against energy management system is a new type of cyber-physical attack, which can bypass the bad data detector of the smart grid to influence the results of state estimation directly, causing the energy management system making wrong estimation and thus affects the stable operation of power grid. We transform the false data injection attack detection problem into binary classification problem in this paper, which use the long-term and short-term memory network (LSTM) to construct the detection model. After that, we use the BP algorithm to update neural network parameters and utilize the dropout method to alleviate the overfitting problem and to improve the detection accuracy. Simulation results prove that the LSTM-based detection method can achieve higher detection accuracy comparing with the BPNN-based approach.
2021-03-17
Wang, W., Zhang, X., Dong, L., Fan, Y., Diao, X., Xu, T..  2020.  Network Attack Detection based on Domain Attack Behavior Analysis. 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :962—965.

Network security has become an important issue in our work and life. Hackers' attack mode has been upgraded from normal attack to APT( Advanced Persistent Threat, APT) attack. The key of APT attack chain is the penetration and intrusion of active directory, which can not be completely detected via the traditional IDS and antivirus software. Further more, lack of security protection of existing solutions for domain control aggravates this problem. Although researchers have proposed methods for domain attack detection, many of them have not yet been converted into effective market-oriented products. In this paper, we analyzes the common domain intrusion methods, various domain related attack behavior characteristics were extracted from ATT&CK matrix (Advanced tactics, techniques, and common knowledge) for analysis and simulation test. Based on analyzing the log file generated by the attack, the domain attack detection rules are established and input into the analysis engine. Finally, the available domain intrusion detection system is designed and implemented. Experimental results show that the network attack detection method based on the analysis of domain attack behavior can analyze the log file in real time and effectively detect the malicious intrusion behavior of hackers , which could facilitate managers find and eliminate network security threats immediately.

2021-03-04
Yangchun, Z., Zhao, Y., Yang, J..  2020.  New Virus Infection Technology and Its Detection. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :388—394.

Computer virus detection technology is an important basic security technology in the information age. The current detection technology has a high success rate for the detection of known viruses and known virus infection technologies, but the development of detection technology often lags behind the development of computer virus infection technology. Under Windows system, there are many kinds of file viruses, which change rapidly, and pose a continuous security threat to users. The research of new file virus infection technology can provide help for the development of virus detection technology. In this paper, a new virus infection technology based on dynamic binary analysis is proposed to execute file virus infection. Using the new virus infection technology, the infected executable file can be detected in the experimental environment. At the same time, this paper discusses the detection method of new virus infection technology. We hope to provide help for the development of virus detection technology from the perspective of virus design.

2021-07-08
Khalid, Muhammad, Zhao, Ruiqin, Wang, Xin.  2020.  Node Authentication in Underwater Acoustic Sensor Networks Using Time-Reversal. Global Oceans 2020: Singapore – U.S. Gulf Coast. :1—4.
Physical layer authentication scheme for node authentication using the time-reversal (TR) process and the location-specific key feature of the channel impulse response (CIR) in an underwater time-varying multipath environment is proposed. TR is a well-known signal focusing technique in signal processing; this focusing effect is used by the database maintaining node to authenticate the sensor node by convolving the estimated CIR from a probe signal with its database of CIRs. Maximum time-reversal resonating strength (MTRRS) is calculated to make an authentication decision. This work considers a static underwater acoustic sensor network (UASN) under the “Alice- Bob-Eve” scenario. The performance of the proposed scheme is expressed by the Probability of Detection (PD) and the Probability of False Alarm (PFA).
2021-01-11
YE, X., JI, B., Chen, X., QIAN, D., Zhao, Z..  2020.  Probability Boltzmann Machine Network for Face Detection on Video. 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :138—147.

By the multi-layer nonlinear mapping and the semantic feature extraction of the deep learning, a deep learning network is proposed for video face detection to overcome the challenge of detecting faces rapidly and accurately in video with changeable background. Particularly, a pre-training procedure is used to initialize the network parameters to avoid falling into the local optimum, and the greedy layer-wise learning is introduced in the pre-training to avoid the training error transfer in layers. Key to the network is that the probability of neurons models the status of human brain neurons which is a continuous distribution from the most active to the least active and the hidden layer’s neuron number decreases layer-by-layer to reduce the redundant information of the input data. Moreover, the skin color detection is used to accelerate the detection speed by generating candidate regions. Experimental results show that, besides the faster detection speed and robustness against face rotation, the proposed method possesses lower false detection rate and lower missing detection rate than traditional algorithms.

2021-08-31
Ge, Chonghui, Sun, Jian, Sun, Yuxin, Di, Yunlong, Zhu, Yongjin, Xie, Linfeng, Zhang, Yingzhou.  2020.  Reversible Database Watermarking Based on Random Forest and Genetic Algorithm. 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :239—247.
The advancing information technology is playing more and more important role in data mining of relational database.1 The transfer and sharing of databases cause the copyright-related security threats. Database watermarking technology can effectively solve the problem with copyright protection and traceability, which has been attracting researchers' attention. In this paper, we proposed a novel, robust and reversible database watermarking technique, named histogram shifting watermarking based on random forest and genetic algorithm (RF-GAHCSW). It greatly improves the watermark capacity by means of histogram width reduction and eliminates the impact of the prediction error attack. Meanwhile, random forest algorithm is used to select important attributes for watermark embedding, and genetic algorithm is employed to find the optimal secret key for the database grouping and determine the position of watermark embedding to improve the watermark capacity and reduce data distortion. The experimental results show that the robustness of RF-GAHCSW is greatly improved, compared with the original HSW, and the distortion has little effect on the usability of database.
Bartol, Janez, Souvent, Andrej, Suljanović, Nermin, Zajc, Matej.  2020.  Secure data exchange between IoT endpoints for energy balancing using distributed ledger. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :56—60.
This paper investigates a secure data exchange between many small distributed consumers/prosumers and the aggregator in the process of energy balancing. It addresses the challenges of ensuring data exchange in a simple, scalable, and affordable way. The communication platform for data exchange is using Ethereum Blockchain technology. It provides a distributed ledger database across a distributed network, supports simple connectivity for new stakeholders, and enables many small entities to contribute with their flexible energy to the system balancing. The architecture of a simulation/emulation environment provides a direct connection of a relational database to the Ethereum network, thus enabling dynamic data management. In addition, it extends security of the environment with security mechanisms of relational databases. Proof-of-concept setup with the simulation of system balancing processes, confirms the suitability of the solution for secure data exchange in the market, operation, and measurement area. For the most intensive and space-consuming measurement data exchange, we have investigated data aggregation to ensure performance optimisation of required computation and space usage.
Zhang, Zehao, Yu, Zhen, Weng, Wei, Guan, Cheng.  2020.  Study on the Digitalization Method of Intelligent Emergency Plan of Power System. 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE). :179—182.
This paper puts forward a formalized method of emergency plan based on ontology, sums up the main concepts such as system, event, rule, measure, constraint and resource, and analyzes the logical relationship among concepts. A digital intelligent emergency plan storage scheme based on relational database model is proposed. In this paper, full-text search, data search and knowledge search are comprehensively used to adapt to the information needs and characteristics of different users' query plans. Finally, an example of emergency plan made by a power supply company is given to illustrate the effectiveness of the method.
2021-08-12
Zheng, Yifeng, Pal, Arindam, Abuadbba, Sharif, Pokhrel, Shiva Raj, Nepal, Surya, Janicke, Helge.  2020.  Towards IoT Security Automation and Orchestration. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :55—63.
The massive boom of Internet of Things (IoT) has led to the explosion of smart IoT devices and the emergence of various applications such as smart cities, smart grids, smart mining, connected health, and more. While the proliferation of IoT systems promises many benefits for different sectors, it also exposes a large attack surface, raising an imperative need to put security in the first place. It is impractical to heavily rely on manual operations to deal with security of massive IoT devices and applications. Hence, there is a strong need for securing IoT systems with minimum human intervention. In light of this situation, in this paper, we envision security automation and orchestration for IoT systems. After conducting a comprehensive evaluation of the literature and having conversations with industry partners, we envision a framework integrating key elements towards this goal. For each element, we investigate the existing landscapes, discuss the current challenges, and identify future directions. We hope that this paper will bring the attention of the academic and industrial community towards solving challenges related to security automation and orchestration for IoT systems.
2021-03-09
Zhou, B., He, J., Tan, M..  2020.  A Two-stage P2P Botnet Detection Method Based on Statistical Features. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :497—502.

P2P botnet has become one of the most serious threats to today's network security. It can be used to launch kinds of malicious activities, ranging from spamming to distributed denial of service attack. However, the detection of P2P botnet is always challenging because of its decentralized architecture. In this paper, we propose a two-stage P2P botnet detection method which only relies on several traffic statistical features. This method first detects P2P hosts based on three statistical features, and then distinguishes P2P bots from benign P2P hosts by means of another two statistical features. Experimental evaluations on real-world traffic datasets shows that our method is able to detect hidden P2P bots with a detection accuracy of 99.7% and a false positive rate of only 0.3% within 5 minutes.

2021-01-20
Lei, M., Jin, M., Huang, T., Guo, Z., Wang, Q., Wu, Z., Chen, Z., Chen, X., Zhang, J..  2020.  Ultra-wideband Fingerprinting Positioning Based on Convolutional Neural Network. 2020 International Conference on Computer, Information and Telecommunication Systems (CITS). :1—5.

The Global Positioning System (GPS) can determine the position of any person or object on earth based on satellite signals. But when inside the building, the GPS cannot receive signals, the indoor positioning system will determine the precise position. How to achieve more precise positioning is the difficulty of an indoor positioning system now. In this paper, we proposed an ultra-wideband fingerprinting positioning method based on a convolutional neural network (CNN), and we collect the dataset in a room to test the model, then compare our method with the existing method. In the experiment, our method can reach an accuracy of 98.36%. Compared with other fingerprint positioning methods our method has a great improvement in robustness. That results show that our method has good practicality while achieves higher accuracy.

2021-07-08
Signori, Alberto, Campagnaro, Filippo, Wachlin, Kim-Fabian, Nissen, Ivor, Zorzi, Michele.  2020.  On the Use of Conversation Detection to Improve the Security of Underwater Acoustic Networks. Global Oceans 2020: Singapore – U.S. Gulf Coast. :1—8.
Security is one of the key aspects of underwater acoustic networks, due to the critical importance of the scenarios in which these networks can be employed. For example, attacks performed to military underwater networks or to assets deployed for tsunami prevention can lead to disastrous consequences. Nevertheless, countermeasures to possible network attacks have not been widely investigated so far. One way to identify possible attackers is by using reputation, where a node gains trust each time it exhibits a good behavior, and loses trust each time it behaves in a suspicious way. The first step for analyzing if a node is behaving in a good way is to inspect the network traffic, by detecting all conversations. This paper proposes both centralized and decentralized algorithms for performing this operation, either from the network or from the node perspective. While the former can be applied only in post processing, the latter can also be used in real time by each node, and so can be used for creating the trust value. To evaluate the algorithms, we used real experimental data acquired during the EDA RACUN project (Robust Underwater Communication in Underwater Networks).
2021-09-30
Xu, Aidong, Jiang, Yixin, Zhang, Yunan, Hong, Chao, Cai, Xingpu.  2020.  A Double-Layer Cyber Physical Cooperative Emergency Control Strategy Modification Method for Cyber-Attacks Against Power System. 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). :1–5.
With the great development of the information communication technology, power systems have been typical Cyber Physical Systems (CPSs). Although the control function of the grid side is becoming more intelligent, Grid Cyber Physical System (GCPS) brings the risk of potential cyberattacks. In this paper, the impacts of cyber-attacks against GCPS are analyzed based on confusion matrix model firstly, then a double-layer cyber physical collaboration control strategy adjustment methods is proposed considering the status of cyber modules and physical devices infected by cyber-attacks. Finally, the feasibility and effectiveness of the proposed method are verified on the IEEE standard system.
2021-02-01
Zhang, Y., Liu, Y., Chung, C.-L., Wei, Y.-C., Chen, C.-H..  2020.  Machine Learning Method Based on Stream Homomorphic Encryption Computing. 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). :1–2.
This study proposes a machine learning method based on stream homomorphic encryption computing for improving security and reducing computational time. A case study of mobile positioning based on k nearest neighbors ( kNN) is selected to evaluate the proposed method. The results showed the proposed method can save computational resources than others.
2021-02-10
Romano, A., Zheng, Y., Wang, W..  2020.  MinerRay: Semantics-Aware Analysis for Ever-Evolving Cryptojacking Detection. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1129—1140.
Recent advances in web technology have made in-browser crypto-mining a viable funding model. However, these services have been abused to launch large-scale cryptojacking attacks to secretly mine cryptocurrency in browsers. To detect them, various signature-based or runtime feature-based methods have been proposed. However, they can be imprecise or easily circumvented. To this end, we propose MinerRay, a generic scheme to detect malicious in-browser cryptominers. Instead of leveraging unreliable external patterns, MinerRay infers the essence of cryptomining behaviors that differentiate mining from common browser activities in both WebAssembly and JavaScript contexts. Additionally, to detect stealthy mining activities without user consents, MinerRay checks if the miner can only be instantiated from user actions. MinerRay was evaluated on over 1 million websites. It detected cryptominers on 901 websites, where 885 secretly start mining without user consent. Besides, we compared MinerRay with five state-of-the-art signature-based or behavior-based cryptominer detectors (MineSweeper, CMTracker, Outguard, No Coin, and minerBlock). We observed that emerging miners with new signatures or new services were detected by MinerRay but missed by others. The results show that our proposed technique is effective and robust in detecting evolving cryptominers, yielding more true positives, and fewer errors.
2021-06-30
Xu, Hui, Zhang, Wei, Gao, Man, Chen, Hongwei.  2020.  Clustering Analysis for Big Data in Network Security Domain Using a Spark-Based Method. 2020 IEEE 5th International Symposium on Smart and Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). :1—4.
Considering the problem of network security under the background of big data, the clustering analysis algorithms can be utilized to improve the correctness of network intrusion detection models for security management. As a kind of iterative clustering analysis algorithm, K-means algorithm is not only simple but also efficient, so it is widely used. However, the traditional K-means algorithm cannot well solve the network security problem when facing big data due to its high complexity and limited processing ability. In this case, this paper proposes to optimize the traditional K-means algorithm based on the Spark platform and deploy the optimized clustering analysis algorithm in the distributed architecture, so as to improve the efficiency of clustering algorithm for network intrusion detection in big data environment. The experimental result shows that, compared with the traditional K-means algorithm, the efficiency of the optimized K-means algorithm using a Spark-based method is significantly improved in the running time.
2021-08-03
Xia, Shaoxian, Wang, Zheng, Hou, Zhanbin, Ye, Hongshu, Xue, Binbin, Wang, Shouzhi, Zhang, Xuecheng, Yang, Kewen.  2020.  Design of Quantum Key Fusion Model for Power Multi-terminal. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :196—199.
With the construction of State Grid informatization, professional data such as operation inspection, marketing, and regulation have gradually shifted from offline to online. In recent years, cyberspace security incidents have occurred frequently, and national and group cybersecurity threats have emerged. As the next-generation communication system, quantum security has to satisfy the security requirements. Also, it is especially important to build the fusion application of energy network quantum private communication technology and conventional network, and to form a safe and reliable quantum-level communication technology solution suitable for the power grid. In this paper, from the perspective of the multi-terminal quantum key application, combined with a mature electricity consumption information collection system, a handheld meter reading solution based on quantum private communication technology is proposed to effectively integrate the two and achieve technological upgrading. First, from the technical theory and application fields, the current situation of quantum private communication technology and its feasibility of combining with classical facilities are introduced and analyzed. Then, the hardware security module and handheld meter reading terminal equipment are taken as typical examples to design and realize quantum key shared storage, business security process application model; finally, based on the overall environment of quantum key distribution, the architecture design of multi-terminal quantum key application verification is implemented to verify the quantum key business application process.
2021-06-30
Chen, Jichang, Lu, Zhixiang, Zhu, Xueping.  2020.  A Lightweight Dual Authentication Protocol for the Internet of Vehicles. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :17—22.
With the development of 5G communication technology, the status of the Internet of Vehicles in people's lives is greatly improved in the general trend of intelligent transportation. The combination of vehicles and Radio Frequency Identification (RFID) makes the application prospects of vehicle networking gradually expand. However, the wireless network of the Internet of Vehicles is open and mobile, so it can be easily stolen or tampered with by attackers. Moreover, it will cause serious traffic security problems and even threat people's lives. In this paper, we propose a lightweight authentication protocol for the Internet of Vehicles based on a mobile RFID system and give corresponding security requirements for modeling potential attacks. The protocol is based on the three-party mutual authentication, and uses bit-operated left-cycle shift operations and hetero-oriented operations to generate encrypted data. The simultaneous inclusion of triparty shared key information and random numbers makes the protocol resistant to counterfeit attacks, violent attacks, replay attacks and desynchronization attacks. Finally, a simulation analysis of the security protocol using the ProVerif tool shows that the protocol secures is not accessible to attackers during the data transfer, and achieve the three-party authentication between sensor nodes (SN), vehicle nodes (Veh) and backend servers.
2021-07-28
Alsmadi, Izzat, Zarrad, Anis, Yassine, Abdulrahmane.  2020.  Mutation Testing to Validate Networks Protocols. 2020 IEEE International Systems Conference (SysCon). :1—8.
As networks continue to grow in complexity using wired and wireless technologies, efficient testing solutions should accommodate such changes and growth. Network simulators provide a network-independent environment to provide different types of network testing. This paper is motivated by the observation that, in many cases in the literature, the success of developed network protocols is very sensitive to the initial conditions and assumptions of the testing scenarios. Network services are deployed in complex environments; results of testing and simulation can vary from one environment to another and sometimes in the same environment at different times. Our goal is to propose mutation-based integration testing that can be deployed with network protocols and serve as Built-in Tests (BiT).This paper proposes an integrated mutation testing framework to achieve systematic test cases' generation for different scenario types. Scenario description and variables' setting should be consistent with the protocol specification and the simulation environment. We focused on creating test cases for critical scenarios rather than preliminary or simplified scenarios. This will help users to report confident simulation results and provide credible protocol analysis. The criticality is defined as a combination of network performance metrics and critical functions' coverage. The proposed solution is experimentally proved to obtain accurate evaluation results with less testing effort by generating high-quality testing scenarios. Generated test scenarios will serve as BiTs for the network simulator. The quality of the test scenarios is evaluated from three perspectives: (i) code coverage, (ii) mutation score and (iii) testing effort. In this work, we implemented the testing framework in NS2, but it can be extended to any other simulation environment.
ISSN: 2472-9647
2021-01-28
Drašar, M., Moskal, S., Yang, S., Zat'ko, P..  2020.  Session-level Adversary Intent-Driven Cyberattack Simulator. 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT). :1—9.

Recognizing the need for proactive analysis of cyber adversary behavior, this paper presents a new event-driven simulation model and implementation to reveal the efforts needed by attackers who have various entry points into a network. Unlike previous models which focus on the impact of attackers' actions on the defender's infrastructure, this work focuses on the attackers' strategies and actions. By operating on a request-response session level, our model provides an abstraction of how the network infrastructure reacts to access credentials the adversary might have obtained through a variety of strategies. We present the current capabilities of the simulator by showing three variants of Bronze Butler APT on a network with different user access levels.

2021-05-20
Schaerer, Jakob, Zumbrunn, Severin, Braun, Torsten.  2020.  Veritaa - The Graph of Trust. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :168—175.

Today the integrity of digital documents and the authenticity of their origin is often hard to verify. Existing Public Key Infrastructures (PKIs) are capable of certifying digital identities but do not provide solutions to immutably store signatures, and the process of certification is often not transparent. In this work we propose Veritaa, a Distributed Public Key Infrastructure and Signature Store (DPKISS). The major innovation of Veritaa is the Graph of Trust, a directed graph that uses relations between identity claims to certify the identities and stores signed relations to digital document identifiers. The distributed architecture of Veritaa and the Graph of Trust enables a transparent certification process. To ensure non-repudiation and immutability of all actions that have been signed on the Graph of Trust, an application specific Distributed Ledger Technology (DLT) is used as secure storage. In this work a reference implementation of the proposed architecture was designed and implemented. Furthermore, a testbed was created and used for the evaluation of Veritaa. The evaluation of Veritaa shows the benefits and the high performance of the proposed architecture.

2021-02-03
Mou, W., Ruocco, M., Zanatto, D., Cangelosi, A..  2020.  When Would You Trust a Robot? A Study on Trust and Theory of Mind in Human-Robot Interactions 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :956—962.

Trust is a critical issue in human-robot interactions (HRI) as it is the core of human desire to accept and use a non-human agent. Theory of Mind (ToM) has been defined as the ability to understand the beliefs and intentions of others that may differ from one's own. Evidences in psychology and HRI suggest that trust and ToM are interconnected and interdependent concepts, as the decision to trust another agent must depend on our own representation of this entity's actions, beliefs and intentions. However, very few works take ToM of the robot into consideration while studying trust in HRI. In this paper, we investigated whether the exposure to the ToM abilities of a robot could affect humans' trust towards the robot. To this end, participants played a Price Game with a humanoid robot (Pepper) that was presented having either low-level ToM or high-level ToM. Specifically, the participants were asked to accept the price evaluations on common objects presented by the robot. The willingness of the participants to change their own price judgement of the objects (i.e., accept the price the robot suggested) was used as the main measurement of the trust towards the robot. Our experimental results showed that robots possessing a high-level of ToM abilities were trusted more than the robots presented with low-level ToM skills.

2020-09-21
Zhang, Xianzhen, Chen, Zhanfang, Gong, Yue, Liu, Wen.  2019.  A Access Control Model of Associated Data Sets Based on Game Theory. 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI). :1–4.
With the popularity of Internet applications and rapid development, data using and sharing process may lead to the sensitive information divulgence. To deal with the privacy protection issue more effectively, in this paper, we propose the associated data sets protection model based on game theory from the point of view of realizing benefits from the access of privacy is about happen, quantify the extent to which visitors gain sensitive information, then compares the tolerance of the sensitive information owner and finally decides whether to allow the visitor to make an access request.