Biblio
Over the past decade, smart grids have been widely implemented. Real-time pricing can better address demand-side management in smart grids. Real-time pricing requires managers to interact more with consumers at the data level, which raises many privacy threats. Thus, we introduce differential privacy into the Real-time pricing for privacy protection. However, differential privacy leaves more space for an adversary to compromise the robustness of the system, which has not been well addressed in the literature. In this paper, we propose a novel active attack detection scheme against stealthy attacks, and then give the proof of correctness and effectiveness of the proposed scheme. Further, we conduct extensive experiments with real datasets from CER to verify the detection performance of the proposed scheme.
Recent studies have shown that co-resident attacks have aroused great security threat in cloud. Since hardware is shared among different tenants, malicious tenants can launch various co-resident attacks, such as side channel attacks, covert channel attacks and resource interference attacks. Existing countermeasures have their limitations and can not provide comprehensive defense against co-resident attacks. This paper combines the advantages of various countermeasures and proposes a complete co-resident threat defense solution which consists of co-resident-resistant VM allocation (CRRVA), analytic hierarchy process-based threat score mechanism (AHPTSM) and attack-aware VM reallocation (AAVR). CRRVA securely allocates VMs and also takes load balance and power consumption into consideration to make the allocation policy more practical. According to the intrinsic characteristics of co-resident attacks, AHPTSM evaluates VM's threat score which denotes the probability that a VM is suffering or conducting co-resident attacks based on analytic hierarchy process. And AAVR further migrates VMs with extremely high threat scores and separates VM pairs which are likely to be malicious to each other. Extensive experiments in CloudSim have shown that CRRVA can greatly reduce the allocation co-resident threat as well as balancing the load for both CSPs and tenants with little impact on power consumption. In addition, guided by threat score distribution, AAVR can effectively guarantee runtime co-resident security by migrating high threat score VMs with less migration cost.
With the proliferation of smartphones, a novel sensing paradigm called Mobile Crowd Sensing (MCS) has emerged very recently. However, the attacks and faults in MCS cause a serious false data problem. Observing the intrinsic low dimensionality of general monitoring data and the sparsity of false data, false data detection can be performed based on the separation of normal data and anomalies. Although the existing separation algorithm based on Direct Robust Matrix Factorization (DRMF) is proven to be effective, requiring iteratively performing Singular Value Decomposition (SVD) for low-rank matrix approximation would result in a prohibitively high accumulated computation cost when the data matrix is large. In this work, we observe the quick false data location feature from our empirical study of DRMF, based on which we propose an intelligent Light weight Low Rank and False Matrix Separation algorithm (LightLRFMS) that can reuse the previous result of the matrix decomposition to deduce the one for the current iteration step. Our algorithm can largely speed up the whole iteration process. From a theoretical perspective, we validate that LightLRFMS only requires one round of SVD computation and thus has very low computation cost. We have done extensive experiments using a PM 2.5 air condition trace and a road traffic trace. Our results demonstrate that LightLRFMS can achieve very good false data detection performance with the same highest detection accuracy as DRMF but with up to 10 times faster speed thanks to its lower computation cost.
Deep packet inspection (DPI) is widely used in content-aware network applications to detect string features. It is of vital importance to improve the DPI performance due to the ever-increasing link speed. In this demo, we propose a novel DPI architecture with a hierarchy memory structure and parallel matching engines based on memory-centric FPGA. The implemented DPI prototype is able to provide up to 60Gbps full-text string matching throughput and fast rules update speed.