Biblio
Filters: First Letter Of Last Name is Z [Clear All Filters]
NodeMerge: Template Based Efficient Data Reduction For Big-Data Causality Analysis. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1324–1337.
.
2018. Today's enterprises are exposed to sophisticated attacks, such as Advanced Persistent Threats\textbackslashtextasciitilde(APT) attacks, which usually consist of stealthy multiple steps. To counter these attacks, enterprises often rely on causality analysis on the system activity data collected from a ubiquitous system monitoring to discover the initial penetration point, and from there identify previously unknown attack steps. However, one major challenge for causality analysis is that the ubiquitous system monitoring generates a colossal amount of data and hosting such a huge amount of data is prohibitively expensive. Thus, there is a strong demand for techniques that reduce the storage of data for causality analysis and yet preserve the quality of the causality analysis. To address this problem, in this paper, we propose NodeMerge, a template based data reduction system for online system event storage. Specifically, our approach can directly work on the stream of system dependency data and achieve data reduction on the read-only file events based on their access patterns. It can either reduce the storage cost or improve the performance of causality analysis under the same budget. Only with a reasonable amount of resource for online data reduction, it nearly completely preserves the accuracy for causality analysis. The reduced form of data can be used directly with little overhead. To evaluate our approach, we conducted a set of comprehensive evaluations, which show that for different categories of workloads, our system can reduce the storage capacity of raw system dependency data by as high as 75.7 times, and the storage capacity of the state-of-the-art approach by as high as 32.6 times. Furthermore, the results also demonstrate that our approach keeps all the causality analysis information and has a reasonably small overhead in memory and hard disk.
Noise Matters: Using Sensor and Process Noise Fingerprint to Detect Stealthy Cyber Attacks and Authenticate Sensors in CPS. Proceedings of the 34th Annual Computer Security Applications Conference. :566–581.
.
2018. A novel scheme is proposed to authenticate sensors and detect data integrity attacks in a Cyber Physical System (CPS). The proposed technique uses the hardware characteristics of a sensor and physics of a process to create unique patterns (herein termed as fingerprints) for each sensor. The sensor fingerprint is a function of sensor and process noise embedded in sensor measurements. Uniqueness in the noise appears due to manufacturing imperfections of a sensor and due to unique features of a physical process. To create a sensor's fingerprint a system-model based approach is used. A noise-based fingerprint is created during the normal operation of the system. It is shown that under data injection attacks on sensors, noise pattern deviations from the fingerprinted pattern enable the proposed scheme to detect attacks. Experiments are performed on a dataset from a real-world water treatment (SWaT) facility. A class of stealthy attacks is designed against the proposed scheme and extensive security analysis is carried out. Results show that a range of sensors can be uniquely identified with an accuracy as high as 98%. Extensive sensor identification experiments are carried out on a set of sensors in SWaT testbed. The proposed scheme is tested on a variety of attack scenarios from the reference literature which are detected with high accuracy
A Novel Route Randomization Approach for Moving Target Defense. 2018 IEEE 18th International Conference on Communication Technology (ICCT). :11–15.
.
2018. Route randomization is an important research focus for moving target defense which seeks to proactively and dynamically change the forwarding routes in the network. In this paper, the difficulties of implementing route randomization in traditional networks are analyzed. To solve these difficulties and achieve effective route randomization, a novel route randomization approach is proposed, which is implemented by adding a mapping layer between routers' physical interfaces and their corresponding logical addresses. The design ideas and the details of proposed approach are presented. The effectiveness and performance of proposed approach are verified and evaluated by corresponding experiments.
A Novel Support Vector Machine Algorithm for Missing Data. Proceedings of the 2Nd International Conference on Innovation in Artificial Intelligence. :48–53.
.
2018. Missing data problem often occurs in data analysis. The most common way to solve this problem is imputation. But imputation methods are only suitable for dealing with a low proportion of missing data, when assuming that missing data satisfies MCAR (Missing Completely at Random) or MAR (Missing at Random). In this paper, considering the reasons for missing data, we propose a novel support vector machine method using a new kernel function to solve the problem with a relatively large proportion of missing data. This method makes full use of observed data to reduce the error caused by filling a large number of missing values. We validate our method on 4 data sets from UCI Repository of Machine Learning. The accuracy, F-score, Kappa statistics and recall are used to evaluate the performance. Experimental results show that our method achieve significant improvement in terms of classification results compared with common imputation methods, even when the proportion of missing data is high.
One to One Identification of Cryptosystem Using Fisher's Discriminant Analysis. Proceedings of the 6th ACM/ACIS International Conference on Applied Computing and Information Technology. :7–12.
.
2018. Distinguishing analysis is an important part of cryptanalysis. It is an important content of discriminating analysis that how to identify ciphertext is encrypted by which cryptosystems when it knows only ciphertext. In this paper, Fisher's discriminant analysis (FDA), which is based on statistical method and machine learning, is used to identify 4 stream ciphers and 7 block ciphers one to one by extracting 9 different features. The results show that the accuracy rate of the FDA can reach 80% when identifying files that are encrypted by the stream cipher and the block cipher in ECB mode respectively, and files encrypted by the block cipher in ECB mode and CBC mode respectively. The average one to one identification accuracy rates of stream ciphers RC4, Grain, Sosemanuk are more than 55%. The maximum accuracy rate can reach 60% when identifying SMS4 from block ciphers in CBC mode one to one. The identification accuracy rate of entropy-based features is apparently higher than the probability-based features.
Overview on Moving Target Network Defense. 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC). :821–827.
.
2018. Moving Target Defense (MTD) is a research hotspot in the field of network security. Moving Target Network Defense (MTND) is the implementation of MTD at network level. Numerous related works have been proposed in the field of MTND. In this paper, we focus on the scope and area of MTND, systematically present the recent representative progress from four aspects, including IP address and port mutation, route mutation, fingerprint mutation and multiple mutation, and put forward the future development directions. Several new perspectives and elucidations on MTND are rendered.
PACE: Penalty Aware Cache Modeling with Enhanced AET. Proceedings of the 9th Asia-Pacific Workshop on Systems. :19:1–19:8.
.
2018. Past cache modeling techniques are typically limited to a cache system with a fixed cache line/block size. This limitation is not a problem for a hardware cache where the cache line size is uniform. However, modern in-memory software caches, such as Memcached and Redis, are able to cache varied-size data objects. A software cache supports update and delete operations in addition to only reads and writes for a hardware cache. Moreover, existing cache models often assume that the penalty for each cache miss is identical, which is not true especially for software cache targeting web services, and past cache management policies that aim to improve cache hit rate are no longer sufficient. We propose a more general cache model that can handle varied cache block sizes, nonuniform miss penalties, and diverse cache operations. In this paper, we first extend a state-of-the-art cache model to accurately predict cache miss ratios for variable cache sizes when object size, updates and deletions are considered. We then apply this model to drive cache management when miss penalty is brought into consideration. Our approach delivers better results than a recent penalty-aware cache management scheme, Hyperbolic Caching, especially when cache budget is tight. Another advantage of our approach is that it provides predictable and controllable cache management on cache space allocation, especially when multiple applications share the cache space.
Privacy Preserving Multiclass Classification for Horizontally Distributed Data. Proceedings of the 19th Annual SIG Conference on Information Technology Education. :165–165.
.
2018. With the advent of the era of big data, applying data mining techniques on assembling data from multiple parties (or sources) has become a leading trend. In this work, a Privacy Preserving Multiclass Classification (PPM2C) method is proposed. Experimental results show that PPM2C is workable and stable.
Privacy-Preserving Triangle Counting in Large Graphs. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. :1283–1292.
.
2018. Triangle count is a critical parameter in mining relationships among people in social networks. However, directly publishing the findings obtained from triangle counts may bring potential privacy concern, which raises great challenges and opportunities for privacy-preserving triangle counting. In this paper, we choose to use differential privacy to protect triangle counting for large scale graphs. To reduce the large sensitivity caused in large graphs, we propose a novel graph projection method that can be used to obtain an upper bound for sensitivity in different distributions. In particular, we publish the triangle counts satisfying the node-differential privacy with two kinds of histograms: the triangle count distribution and the cumulative distribution. Moreover, we extend the research on privacy preserving triangle counting to one of its applications, the local clustering coefficient. Experimental results show that the cumulative distribution can fit the real statistical information better, and our proposed mechanism has achieved better accuracy for triangle counts while maintaining the requirement of differential privacy.
A Programmable Network Management Architecture for Address Driven Network. 2018 10th International Conference on Communications, Circuits and Systems (ICCCAS). :199–206.
.
2018. The operation and management of network is facing increasing complexities brought by the evolution of network protocols and the demands of rapid service delivery. In this paper, we propose a programmable network management architecture, which manages network based on NETCONF protocol and provides REST APIs to upper layer so that further programming can be done based on the APIs to implement flexible management. Functions of devices can be modeled based on YANG language, and the models can be translated into REST APIs. We apply it to the management of ADN (Address Driven Network), an innovative network architecture proposed by Tsinghua University to inhibit IP spoofing, improve network security and provide high service quality. We model the functions of ADN based on YANG language, and implement the network management functions based on the REST APIs. We deploy and evaluate it in a laboratory environment. Test result shows that the programmable network management architecture is flexible to implement management for new network services.
Propagation Characteristics of Acoustic Emission Signals in Multi Coupling Interface of the Engine. 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM). :254–258.
.
2018. The engine is a significant and dynamic component of the aircraft. Because of the complicated structure and severe operating environment, the fault detection of the engine has always been the key and difficult issue in the field of reliability. Based on an engine and the acoustic emission technology, we propose a method of identifying fault types and determining different components in the engine by constructing the attenuation coefficient. There are several common faults of engines, and three different types of fault sources are generated experimentally in this work. Then the fault signal of the above fault sources propagating in different engine components are obtained. Finally, the acoustic emission characteristics of the fault signal are extracted and judged by the attenuation coefficient. The work effectively identifies different types of faults and studies the effects of different structural components on the propagation of fault acoustic emission signals, which provides a method for the use of acoustic emission technology to identify the faults types of the engine and to study the propagation characteristics of AE signals on the engine.*
Protect white-box AES to resist table composition attacks. IET Information Security. 12:305–313.
.
2018. White-box cryptography protects cryptographic software in a white-box attack context (WBAC), where the dynamic execution of the cryptographic software is under full control of an adversary. Protecting AES in the white-box setting attracted many scientists and engineers, and several solutions emerged. However, almost all these solutions have been badly broken by various efficient white-box attacks, which target compositions of key-embedding lookup tables. In 2014, Luo, Lai, and You proposed a new WBAC-oriented AES implementation, and claimed that their implementation is secure against both Billet et al.'s attack and De Mulder et al.'s attack. In this study, based on the existing table-composition-targeting cryptanalysis techniques, the authors show that the secret key of the Luo-Lai-You (LLY) implementation can be recovered with a time complexity of about 244. Furthermore, the authors propose a new white-box AES implementation based on table lookups, which is shown to be resistant against the existing table-composition-targeting white-box attacks. The authors, key-embedding tables are obfuscated with large affine mappings, which cannot be cancelled out by table compositions of the existing cryptanalysis techniques. Although their implementation requires twice as much memory as the LLY WBAES to store the tables, its speed is about 63 times of the latter.
Query-Efficient Black-Box Attack by Active Learning. 2018 IEEE International Conference on Data Mining (ICDM). :1200–1205.
.
2018. Deep neural network (DNN) as a popular machine learning model is found to be vulnerable to adversarial attack. This attack constructs adversarial examples by adding small perturbations to the raw input, while appearing unmodified to human eyes but will be misclassified by a well-trained classifier. In this paper, we focus on the black-box attack setting where attackers have almost no access to the underlying models. To conduct black-box attack, a popular approach aims to train a substitute model based on the information queried from the target DNN. The substitute model can then be attacked using existing white-box attack approaches, and the generated adversarial examples will be used to attack the target DNN. Despite its encouraging results, this approach suffers from poor query efficiency, i.e., attackers usually needs to query a huge amount of times to collect enough information for training an accurate substitute model. To this end, we first utilize state-of-the-art white-box attack methods to generate samples for querying, and then introduce an active learning strategy to significantly reduce the number of queries needed. Besides, we also propose a diversity criterion to avoid the sampling bias. Our extensive experimental results on MNIST and CIFAR-10 show that the proposed method can reduce more than 90% of queries while preserve attacking success rates and obtain an accurate substitute model which is more than 85% similar with the target oracle.
Randomized Bit Vector: Privacy-Preserving Encoding Mechanism. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. :1263–1272.
.
2018. Recently, many methods have been proposed to prevent privacy leakage in record linkage by encoding record pair data into another anonymous space. Nevertheless, they cannot perform well in some circumstances due to high computational complexities, low privacy guarantees or loss of data utility. In this paper, we propose distance-aware encoding mechanisms to compare numerical values in the anonymous space. We first embed numerical values into Hamming space by a low-computational encoding algorithm with randomized bit vector. To provide rigorous privacy guarantees, we use the random response based on differential privacy to keep global indistinguishability of original data and use Laplace noises via pufferfish mechanism to provide local indistinguishability. Besides, we provide an approach for embedding and privacy-related parameters selection to improve data utility. Experiments on datasets from different data distributions and application contexts validate that our approaches can be used efficiently in privacy-preserving record linkage tasks compared with previous works and have excellent performance even under very small privacy budgets.
Redundant Dictionary Construction via Genetic Algorithm. Proceedings of the 2Nd International Conference on Vision, Image and Signal Processing. :66:1–66:5.
.
2018. Sparse representation of signals based on redundant dictionary is widely used in array signal processing. In this paper, a redundant dictionary construction method via genetic algorithm (GA) is proposed for array signal processing. The problem is formulated as a dictionary selection problem where the dictionary entries are produced by discretizing the angle space. We apply the orthogonality of the entries to evaluate the dictionary according to the Restricted Isometry Property (RIP). GA is used to discretize the angle space which can make the dictionary more orthogonal. Simulation results show that the proposed method can obtain a better division of angle, improving the orthogonality of dictionary effectively, and is suitable for arbitrary observation space compared with commonly used equal angle division and equal sine division.
Research and Implementation of Mobile Application Security Detection Combining Static and Dynamic. 2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :243–247.
.
2018. With the popularity of the Internet and mobile intelligent terminals, the number of mobile applications is exploding. Mobile intelligent terminals trend to be the mainstream way of people's work and daily life online in place of PC terminals. Mobile application system brings some security problems inevitably while it provides convenience for people, and becomes a main target of hackers. Therefore, it is imminent to strengthen the security detection of mobile applications. This paper divides mobile application security detection into client security detection and server security detection. We propose a combining static and dynamic security detection method to detect client-side. We provide a method to get network information of server by capturing and analyzing mobile application traffic, and propose a fuzzy testing method based on HTTP protocol to detect server-side security vulnerabilities. Finally, on the basis of this, an automated platform for security detection of mobile application system is developed. Experiments show that the platform can detect the vulnerabilities of mobile application client and server effectively, and realize the automation of mobile application security detection. It can also reduce the cost of mobile security detection and enhance the security of mobile applications.
The Research on IOT Security Architecture and Its Key Technologies. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1277–1280.
.
2018. With the development of scientific information technology, the emergence of the Internet of Things (IOT) promoted the information industry once again to a new stage of economic and technological development. From the perspective of confidentiality, integrity, and availability of information security, this paper analyzed the current state of the IOT and the security threats, and then researched the security primary technologies of the IOT security architecture. IOT security architecture established the foundation for a reliable information security system for the IOT.
Research on Multi Point Self Healing Technology of Optical Channel Based on Wide Area Stability Control and Proposal of Reducing Business Risk Optimization Model. Proceedings of the 10th International Conference on Computer Modeling and Simulation. :308–312.
.
2018. In order to reduce the operation risk of the network and improve the self-healing ability of the real-time wide area control system, this paper presents a link break analysis model of power communication network. This model is based on the research and optimization of multi-point fault self-healing technology about the light channel and combined with the recovery method of single point of failure. According to the definition of risk assessment and the automatic rerouting of basic mechanisms which is based on ASON, the corresponding rerouting triggering mechanism and optimization model is proposed. This measure effectively reduced the operational risk of the business, then further strengthened the robustness and stability of the real-time wide area secure control system that finally ensure the stable and reliable operation of the communication network and the power grid system.
Research on Parallel Dynamic Encryption Transmission Algorithm on VoIP. Proceedings of the 2018 International Conference on Information Science and System. :204–206.
.
2018. Aiming to the current lack of VoIP voice encryption, a dynamic encryption method on grouping voice encryption and parallel encrypted is proposed in this paper. Though dynamic selection of encryption algorithms and dynamic distribution of key to increase the complexity of the encryption, at the same time reduce the time complexity of asymmetric encryption algorithm by using parallel encryption to ensure the real-time of the voice and improve call security.
An Resilient Cloud Architecture for Mission Assurance. 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC). :343–346.
.
2018. In view of the demand for the continuous guarantee capability of the information system in the diversified task and the complex cyber threat environment, a dual loop architecture of the resilient cloud environment for mission assurance is proposed. Firstly, general technical architecture of cloud environment is briefly introduced. Drawing on the idea of software definition, a resilient dual loop architecture based on "perception analysis planning adjustment" is constructed. Then, the core mission assurance system deployment mechanism is designed using the idea of distributed control. Finally, the core mission assurance system is designed in detail, which is consisted of six functional modules, including mission and environment awareness network, intelligent anomaly analysis and prediction, mission and resource situation generation, mission and resource planning, adaptive optimization and adjustment. The design of the dual loop architecture of the resilient cloud environment for mission assurance will further enhance the fast adaptability of the information system in the complex cyber physical environment.
A Robust and Efficient Defense Against Use-after-Free Exploits via Concurrent Pointer Sweeping. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1635-1648.
.
2018. Applications in C/C++ are notoriously prone to memory corruptions. With significant research efforts devoted to this area of study, the security threats posed by previously popular vulnerabilities, such as stack and heap overflows, are not as serious as before. Instead, we have seen the meteoric rise of attacks exploiting use-after-free (UaF) vulnerabilities in recent years, which root in pointers pointing to freed memory (i.e., dangling pointers). Although various approaches have been proposed to harden software against UaF, none of them can achieve robustness and efficiency at the same time. In this paper, we present a novel defense called pSweeper to robustly protect against UaF exploits with low overhead, and pinpoint the root-causes of UaF vulnerabilities with one safe crash. The success of pSweeper lies in its two unique and innovative design ideas, concurrent pointer sweeping (CPW) and object origin tracking (OOT). CPW exploits the increasingly available multi-cores on modern PCs and outsources the heavyweight security checks and enforcement to dedicated threads that can run on spare cores. Specifically, CPW iteratively sweeps all live pointers in a concurrent thread to find dangling pointers. This design is quite different from previous work that requires to track every pointer propagation to maintain accurate point-to relationship between pointers and objects. OOT can help to pinpoint the root-causes of UaF by informing developers of how a dangling pointer is created, i.e., how the problematic object is allocated and freed. We implement a prototype of pSweeper and validate its efficacy in real scenarios. Our experimental results show that pSweeper is effective in defeating real-world UaF exploits and efficient when deployed in production runs.
Role-based Log Analysis Applying Deep Learning for Insider Threat Detection. Proceedings of the 1st Workshop on Security-Oriented Designs of Computer Architectures and Processors. :18–20.
.
2018. Insider threats have shown their great destructive power in information security and financial stability and have received widespread attention from governments and organizations. Traditional intrusion detection systems fail to be effective in insider attacks due to the lack of extensive knowledge for insider behavior patterns. Instead, a more sophisticated method is required to have a deeper understanding for activities that insiders communicate with the information system. In this paper, we design a classifier, a neural network model utilizing Long Short Term Memory (LSTM) to model user log as a natural language sequence and achieve role-based classification. LSTM Model can learn behavior patterns of different users by automatically extracting feature and detect anomalies when log patterns deviate from the trained model. To illustrate the effective of classification model, we design two experiments based on cmu dataset. Experimental evaluations have shown that our model can successfully distinguish different behavior pattern and detect malicious behavior.
SCPN-Based Game Model for Security Situational Awareness in the Intenet of Things. 2018 IEEE Conference on Communications and Network Security (CNS). :1-5.
.
2018. Internet of Things (IoT) is characterized by various of heterogeneous devices that facing numerous threats, which makes modeling security situation of IoT still a certain challenge. This paper defines a Stochastic Colored Petri Net (SCPN) for IoT-based smart environment and then proposes a Game model for security situational awareness. All possible attack paths are computed by the SCPN, and antagonistic behavior of both attackers and defenders are taken into consideration dynamically according to Game Theory (GT). Experiments on two typical attack scenarios in smart home environment demonstrate the effectiveness of the proposed model. The proposed model can form a macroscopic trend curve of the security situation. Analysis of the results shows the capabilities of the proposed model in finding vulnerable devices and potential attack paths, and even facilitating the choice of defense strategy. To the best of our knowledge, this is the first attempt to use Game Theory in the IoT-based SCPN to establish a security situational awareness model for a complex smart environment.
SD-WAN Source Route Based on Protocol-oblivious Forwarding. Proceedings of the 8th International Conference on Communication and Network Security. :95–99.
.
2018. Larger companies need more sites in the wide area network (WAN). However, internet service providers cannot obtain sufficient capacity to handle peak traffic, causing a terrible delay. The software-defined network (SDN) allows to own more programmability, adaptability, and application-aware, but scalability is a critical problem for merging both. This paper proposes a solution based on Protocol-Oblivious Forwarding (POF). It is a higher degree of decoupling control and data planes. The control plane uses fields unrelated to the protocol to unify packet match and route, and the data plane uses a set of general flow instructions in fast forwarding. As a result, we only save three flow tables on the forwarding paths so that each packet keeps a pipeline in the source route header to mark the next output ports. This solution can support a constant delay while the network expands.
SEAF: A Secure, Efficient and Accountable Access Control Framework for Information Centric Networking. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :2213–2221.
.
2018. Information Centric Networking (ICN) has been regarded as an ideal architecture for the next-generation network to handle users' increasing demand for content delivery with in-network cache. While making better use of network resources and providing better delivery service, an effective access control mechanism is needed due to wide dissemination of contents. However, in the existing solutions, making cache-enabled routers or content providers authenticate users' requests causes high computation overhead and unnecessary delay. Also, straightforward utilization of advanced encryption algorithms increases the opportunities for DoS attacks. Besides, privacy protection and service accountability are rarely taken into account in this scenario. In this paper, we propose a secure, efficient, and accountable access control framework, called SEAF, for ICN, in which authentication is performed at the network edge to block unauthorized requests at the very beginning. We adopt group signature to achieve anonymous authentication, and use hash chain technique to greatly reduce the overhead when users make continuous requests for the same file. Furthermore, the content providers can affirm the service amount received from the network and extract feedback information from the signatures and hash chains. By formal security analysis and the comparison with related works, we show that SEAF achieves the expected security goals and possesses more useful features. The experimental results also demonstrate that our design is efficient for routers and content providers, and introduces only slight delay for users' content retrieval.