Biblio
Nowadays, the Internet is developed, so that the requirements for on- and offline data storage have increased. Large storage IT projects, are related to large costs and high level of business risk. A storage service provider (SSP) provides computer storage space and management. In addition to that, it offers also back-up and archiving. Despite this, many companies fears security, privacy and integrity of outsourced data. As a solution, File Assured Deletion (FADE) is a system built upon standard cryptographic issues. It aims to guarantee their privacy and integrity, and most importantly, assuredly deleted files to make them unrecoverable to anybody (including those who manage the cloud storage) upon revocations of file access policies, by encrypting outsourced data files. Unfortunately, This system remains weak, in case the key manager's security is compromised. Our work provides a new scheme that aims to improve the security of FADE by using the TPM (Trusted Platform Module) that stores safely keys, passwords and digital certificates.
The false data injection attack (FDIA) is a form of cyber-attack capable of affecting the secure and economic operation of the smart grid. With DC model-based state estimation, this paper analyzes ways of constructing a successful attacking vector to fulfill specific targets, i.e., pre-specified state variable target and pre-specified meter target according to the adversary's willingness. The grid operator's historical reading experiences on meters are considered as a constraint for the adversary to avoid being detected. Also from the viewpoint of the adversary, we propose to take full advantage of the dual concept of the coefficients in the topology matrix to handle with the problem that the adversary has no access to some meters. Effectiveness of the proposed method is validated by numerical experiments on the IEEE-14 benchmark system.
K-means algorithm has been widely used in machine learning and data mining due to its simplicity and good performance. However, the standard k-means algorithm would be quite slow for clustering millions of data into thousands of or even tens of thousands of clusters. In this paper, we propose a fast k-means algorithm named multi-stage k-means (MKM) which uses a multi-stage filtering approach. The multi-stage filtering approach greatly accelerates the k-means algorithm via a coarse-to-fine search strategy. To further speed up the algorithm, hashing is introduced to accelerate the assignment step which is the most time-consuming part in k-means. Extensive experiments on several massive datasets show that the proposed algorithm can obtain up to 600X speed-up over the k-means algorithm with comparable accuracy.
This paper proposed a new detection and prevention system against DDoS (Distributed Denial of Service) attack in SDN (software defined network) architecture, FL-GUARD (Floodlight-based guard system). Based on characteristics of SDN and centralized control, etc., FL-GUARD applies dynamic IP address binding to solve the problem of IP spoofing, and uses 3.3.2 C-SVM algorithm to detect attacks, and finally take advantage of the centralized control of software-defined network to issue flow tables to block attacks at the source port. The experiment results show the effectiveness of our system. The modular design of FL-GUARD lays a good foundation for the future improvement.
We present a Network Address Translator (NAT) written in C and proven to be semantically correct according to RFC 3022, as well as crash-free and memory-safe. There exists a lot of recent work on network verification, but it mostly assumes models of network functions and proves properties specific to network configuration, such as reachability and absence of loops. Our proof applies directly to the C code of a network function, and it demonstrates the absence of implementation bugs. Prior work argued that this is not feasible (i.e., that verifying a real, stateful network function written in C does not scale) but we demonstrate otherwise: NAT is one of the most popular network functions and maintains per-flow state that needs to be properly updated and expired, which is a typical source of verification challenges. We tackle the scalability challenge with a new combination of symbolic execution and proof checking using separation logic; this combination matches well the typical structure of a network function. We then demonstrate that formally proven correctness in this case does not come at the cost of performance. The NAT code, proof toolchain, and proofs are available at [58].
Research on advertisement has mainly focused on how to accurately predict the click-through rate (CTR). Much less is known about fraud detection and malicious behavior defense. Previous studies usually use statistics, design threshold and manually make strategies, which cannot find potential fraud behavior effectively and suffer from new attacks. In this paper, we make the first step to understand the type of malicious activities on large-scale online advertising platforms. By analyzing each feature comprehensively, we propose a novel coding approach to transform nominal attributes into numeric while maintaining the most effective information of the original data for fraud detection. Next, we code important features such as IP and cookie in our dataset and train machine learning methods to detect fraud traffic automatically. Experimental results on real datasets demonstrate that the proposed fraud detection method performs well considering both the accuracy and efficiency. Finally, we conclude how to design a defense system by considering which methods could be used for the anti-spam gaming in the future.
Advances in virtual reality have generated substantial interest in accurately reproducing and storing spatial audio in the higher order ambisonics (HOA) representation, given its rendering flexibility. Recent standardization for HOA compression adopted a framework wherein HOA data are decomposed into principal components that are then encoded by standard audio coding, i.e., frequency domain quantization and entropy coding to exploit psychoacoustic redundancy. A noted shortcoming of this approach is the occasional mismatch in principal components across blocks, and the resulting suboptimal transitions in the data fed to the audio coder. Instead, we propose a framework where singular value decomposition (SVD) is performed after transformation to the frequency domain via the modified discrete cosine transform (MDCT). This framework not only ensures smooth transition across blocks, but also enables frequency dependent SVD for better energy compaction. Moreover, we introduce a novel noise substitution technique to compensate for suppressed ambient energy in discarded higher order ambisonics channels, which significantly enhances the perceptual quality of the reconstructed HOA signal. Objective and subjective evaluation results provide evidence for the effectiveness of the proposed framework in terms of both higher compression gains and better perceptual quality, compared to existing methods.
With the increasing popularity of augmented reality (AR) services, providing seamless human-computer interactions in the AR setting has received notable attention in the industry. Gesture control devices have recently emerged to be the next great gadgets for AR due to their unique ability to enable computer interaction with day-to-day gestures. While these AR devices are bringing revolutions to our interaction with the cyber world, it is also important to consider potential privacy leakages from these always-on wearable devices. Specifically, the coarse access control on current AR systems could lead to possible abuse of sensor data. Although the always-on gesture sensors are frequently quoted as a privacy concern, there has not been any study on information leakage of these devices. In this article, we present our study on side-channel information leakage of the most popular gesture control device, Myo. Using signals recorded from the electromyography (EMG) sensor and accelerometers on Myo, we can recover sensitive information such as passwords typed on a keyboard and PIN sequence entered through a touchscreen. EMG signal records subtle electric currents of muscle contractions. We design novel algorithms based on dynamic cumulative sum and wavelet transform to determine the exact time of finger movements. Furthermore, we adopt the Hudgins feature set in a support vector machine to classify recorded signal segments into individual fingers or numbers. We also apply coordinate transformation techniques to recover fine-grained spatial information with low-fidelity outputs from the sensor in keystroke recovery. We evaluated the information leakage using data collected from a group of volunteers. Our results show that there is severe privacy leakage from these commodity wearable sensors. Our system recovers complex passwords constructed with lowercase letters, uppercase letters, numbers, and symbols with a mean success rate of 91%.
In the open network environment, the strange entities can establish the mutual trust through Automated Trust Negotiation (ATN) that is based on exchanging digital credentials. In traditional ATN, the attribute certificate required to either satisfied or not, and in the strategy, the importance of the certificate is same, it may cause some unnecessary negotiation failure. And in the actual situation, the properties is not just 0 or 1, it is likely to between 0 and 1, so the satisfaction degree is different, and the negotiation strategy need to be quantified. This paper analyzes the fuzzy negotiation process, in order to improve the trust establishment in high efficiency and accuracy further.
To meet the growing railway-transportation demand, a new train control system, communication-based train control (CBTC) system, aims to maximize the ability of train lines by reducing the headway of each train. However, the wireless communications expose the CBTC system to new security threats. Due to the cyber-physical nature of the CBTC system, a jamming attack can damage the physical part of the train system by disrupting the communications. To address this issue, we develop a secure framework to mitigate the impact of the jamming attack based on a security criterion. At the cyber layer, we apply a multi-channel model to enhance the reliability of the communications and develop a zero-sum stochastic game to capture the interactions between the transmitter and jammer. We present analytical results and apply dynamic programming to find the equilibrium of the stochastic game. Finally, the experimental results are provided to evaluate the performance of the proposed secure mechanism.
With a large number of sensors and control units in networked systems, distributed support vector machines (DSVMs) play a fundamental role in scalable and efficient multi-sensor classification and prediction tasks. However, DSVMs are vulnerable to adversaries who can modify and generate data to deceive the system to misclassification and misprediction. This work aims to design defense strategies for DSVM learner against a potential adversary. We use a game-theoretic framework to capture the conflicting interests between the DSVM learner and the attacker. The Nash equilibrium of the game allows predicting the outcome of learning algorithms in adversarial environments, and enhancing the resilience of the machine learning through dynamic distributed algorithms. We develop a secure and resilient DSVM algorithm with rejection method, and show its resiliency against adversary with numerical experiments.
Notable recent security incidents have generated intense interest in adversaries which attempt to subvert–-perhaps covertly–-crypto$\backslash$-graphic algorithms. In this paper we develop (IND-CPA) Semantically Secure encryption in this challenging setting. This fundamental encryption primitive has been previously studied in the "kleptographic setting," though existing results must relax the model by introducing trusted components or otherwise constraining the subversion power of the adversary: designing a Public Key System that is kletographically semantically secure (with minimal trust) has remained elusive to date. In this work, we finally achieve such systems, even when all relevant cryptographic algorithms are subject to adversarial (kleptographic) subversion. To this end we exploit novel inter-component randomized cryptographic checking techniques (with an offline checking component), combined with common and simple software engineering modular programming techniques (applied to the system's black box specification level). Moreover, our methodology yields a strong generic technique for the preservation of any semantically secure cryptosystem when incorporated into the strong kleptographic adversary setting.
Graphics processing unit (GPU) has been applied successfully in many scientific computing realms due to its superior performances on float-pointing calculation and memory bandwidth, and has great potential in power system applications. The N-1 static security analysis (SSA) appears to be a candidate application in which massive alternating current power flow (ACPF) problems need to be solved. However, when applying existing GPU-accelerated algorithms to solve N-1 SSA problem, the degree of parallelism is limited because existing researches have been devoted to accelerating the solution of a single ACPF. This paper therefore proposes a GPU-accelerated solution that creates an additional layer of parallelism among batch ACPFs and consequently achieves a much higher level of overall parallelism. First, this paper establishes two basic principles for determining well-designed GPU algorithms, through which the limitation of GPU-accelerated sequential-ACPF solution is demonstrated. Next, being the first of its kind, this paper proposes a novel GPU-accelerated batch-QR solver, which packages massive number of QR tasks to formulate a new larger-scale problem and then achieves higher level of parallelism and better coalesced memory accesses. To further improve the efficiency of solving SSA, a GPU-accelerated batch-Jacobian-Matrix generating and contingency screening is developed and carefully optimized. Lastly, the complete process of the proposed GPU-accelerated batch-ACPF solution for SSA is presented. Case studies on an 8503-bus system show dramatic computation time reduction is achieved compared with all reported existing GPU-accelerated methods. In comparison to UMFPACK-library-based single-CPU counterpart using Intel Xeon E5-2620, the proposed GPU-accelerated SSA framework using NVIDIA K20C achieves up to 57.6 times speedup. It can even achieve four times speedup when compared to one of the fastest multi-core CPU parallel computing solution using KLU library. The prop- sed batch-solving method is practically very promising and lays a critical foundation for many other power system applications that need to deal with massive subtasks, such as Monte-Carlo simulation and probabilistic power flow.
Nowadays, Vehicular ad hoc Network as a special class of Mobile ad hoc Network(MANET), provides plenty of services. However, it also brings the privacy protection issues, and there are conflicts between the privacy protection and the services. In this paper, we will propose a privacy protection algorithm based on group signature including two parts, group signature based anonymous verification and batch verification. The anonymous verification is based on the network model we proposed, which can reduce the trust authority burden by dividing the roadside units into different levels, and the batch verification can reduce the time of message verification in one group. We also prove our algorithm can satisfy the demand of privacy protection. Finally, the simulation shows that the algorithm we proposed is better than the BBS on the length of the signature, time delay and packet loss rate.
As the most successful cryptocurrency to date, Bitcoin constitutes a target of choice for attackers. While many attack vectors have already been uncovered, one important vector has been left out though: attacking the currency via the Internet routing infrastructure itself. Indeed, by manipulating routing advertisements (BGP hijacks) or by naturally intercepting traffic, Autonomous Systems (ASes) can intercept and manipulate a large fraction of Bitcoin traffic. This paper presents the first taxonomy of routing attacks and their impact on Bitcoin, considering both small-scale attacks, targeting individual nodes, and large-scale attacks, targeting the network as a whole. While challenging, we show that two key properties make routing attacks practical: (i) the efficiency of routing manipulation; and (ii) the significant centralization of Bitcoin in terms of mining and routing. Specifically, we find that any network attacker can hijack few (\textbackslashtextless;100) BGP prefixes to isolate 50% of the mining power-even when considering that mining pools are heavily multi-homed. We also show that on-path network attackers can considerably slow down block propagation by interfering with few key Bitcoin messages. We demonstrate the feasibility of each attack against the deployed Bitcoin software. We also quantify their effectiveness on the current Bitcoin topology using data collected from a Bitcoin supernode combined with BGP routing data. The potential damage to Bitcoin is worrying. By isolating parts of the network or delaying block propagation, attackers can cause a significant amount of mining power to be wasted, leading to revenue losses and enabling a wide range of exploits such as double spending. To prevent such effects in practice, we provide both short and long-term countermeasures, some of which can be deployed immediately.
Malicious emails pose substantial threats to businesses. Whether it is a malware attachment or a URL leading to malware, exploitation or phishing, attackers have been employing emails as an effective way to gain a foothold inside organizations of all kinds. To combat email threats, especially targeted attacks, traditional signature- and rule-based email filtering as well as advanced sandboxing technology both have their own weaknesses. In this paper, we propose a predictive analysis approach that learns the differences between legit and malicious emails through static analysis, creates a machine learning model and makes detection and prediction on unseen emails effectively and efficiently. By comparing three different machine learning algorithms, our preliminary evaluation reveals that a Random Forests model performs the best.
Reversible circuits are vulnerable to intellectual property and integrated circuit piracy. To show these vulnerabilities, a detailed understanding on how to identify the function embedded in a reversible circuit is crucial. To obtain the embedded function, one needs to know the synthesis approach used to generate the reversible circuit in the first place. We present a machine learning based scheme to identify the synthesis approach using telltale signs in the design.